
CSE 373
APRIL 14TH – TREES PT 2

ASSORTED MINUTIAE
•  HW3 Out last night

•  No need to submit testing code
•  System.currentTimeMillis()

•  HW1 wrong submissions
•  Grades posted by Sunday – Canvas

announcement
•  Regrade requests

•  https://catalyst.uw.edu/webq/survey/
ejmcc/330190

TODAY’S LECTURE
•  Tree traversals

•  Depth first search
•  Breadth first search

•  Tree properties
•  Balance

TREE TRAVERSALS
•  What is the point of a traversal?

•  Some way to get through elements of the
tree

•  Useful for more than just trees

TREE TRAVERSALS
•  Array implementations

•  Traversal is easy, search left-to-right
•  Traversal is complete, no element is

missed
•  Doesn’t take advantage of heap property

TREE TRAVERSALS
•  Node implementations

•  Not as easy
•  No inherent ordering
•  Two main approaches:

•  Depth first search
•  Breadth first search

DEPTH FIRST SEARCH
•  All tree traversals start at the root
•  As the name implies, traverse down the

tree first.
•  Left or right does not explicitly matter,

but left usually comes first.

DEPTH FIRST SEARCH

How do we search this tree?

DEPTH FIRST SEARCH

Left node first

DEPTH FIRST SEARCH

Keep going down the left nodes

DEPTH FIRST SEARCH

Until you reach the bottom

DEPTH FIRST SEARCH

What next?

DEPTH FIRST SEARCH

Need some way to indicate that
you are completely searched

 (tell the parent)

DEPTH FIRST SEARCH

Parent now knows it is can search
the other child

DEPTH FIRST SEARCH

Leaves are searched when their
data is observed

DEPTH FIRST SEARCH

Now that both of its children have
been completely searched

DEPTH FIRST SEARCH

It needs to indicate that to its
parent

DEPTH FIRST SEARCH

That parent then knows to search
its right child

DEPTH FIRST SEARCH

That parent then knows to search
its right child

DEPTH FIRST SEARCH

This process repeats

DEPTH FIRST SEARCH

This process repeats

DEPTH FIRST SEARCH

This process repeats

DEPTH FIRST SEARCH

This process repeats

DEPTH FIRST SEARCH

This process repeats

DEPTH FIRST SEARCH

This process repeats

DEPTH FIRST SEARCH

This process repeats

DEPTH FIRST SEARCH

Now the left tree is completely
searched and we can search the

 right

DEPTH FIRST SEARCH

On the new subtree, we begin
search from the left

DEPTH FIRST SEARCH

On the new subtree, we begin
search from the left

DEPTH FIRST SEARCH

And we find the object we’re
looking for

DEPTH FIRST SEARCH
•  How does this work in application?

•  For each node, it searches its left subtree
entirely and then moves to the right tree

•  Here search works by breaking the
problem down into sub-problems

•  This is a good indication that we use
recursion

RECURSION
•  Recap from 143
•  What is recursion?

•  A problem that calls itself (with a smaller
version of the input)

•  Example:
•  Linked list search
•  Take a few minutes and discuss a

recursive approach (sorted or unsorted)

RECURSION
public boolean LLsearch(int toFind){!

!return LLsearch(toFind,first)!

}!

private boolean LLsearch(int toFind,Node curr){!

!if(curr == null) return false;!

!if(curr.data == toFind) return true;!

!return LLsearch(toFind,curr.next);!

}!

!

RECURSION
•  How do we apply this approach to DFS?

•  Discuss among yourselves
•  Consider what is the “subproblem”

•  What does it look like?

RECURSION
public boolean DFSearch(int toFind){!

!return DFSearch(toFind,root)!

}!

private boolean DFSearch(int toFind,Node curr){!

!if(curr == null) return false;!

!if(curr.data == toFind) return true;!

!if(DFSearch(toFind,curr.left)) return true;!

!if(DFSearch(toFind,curr.right)) return true;!

!return false;!

}!

!

DEPTH FIRST SEARCH
•  Treat each subtree as a subproblem and

solve recursively.
•  Will go to maximum depth first.
•  When the node is found, the result will

return up the stack
•  What might be a different approach?

ALTERNATE APPROACH

How else to traverse?

ALTERNATE APPROACH

Search the tree from top to bottom

BREADTH FIRST SEARCH
•  If we want to traverse the tree from top to

bottom, how might we go about doing
this?
•  Discuss among yourselves for a minute
•  Can this approach be reduced to a

subproblem?
•  Not easily!

BREADTH FIRST SEARCH
•  Consider the approach

•  Start with the root
•  Search all nodes of depth 1
•  Search all nodes of depth 2
•  …
•  How do we get this ordering?

BREADTH FIRST SEARCH
•  What if we use a Queue?

•  Enqueue the root
•  Then what?

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

enqueue(A)

Queue:

BREADTH FIRST SEARCH
•  What if we use a Queue?
enqueue the root  
 
while the queue has elements:  

!dequeue the node  
!if it matches our search string  
! !return true!

!if it doesn’t,  
! !enqueue its non-null children  

return false;!

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

dequeue and check the node

Queue:

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

enqueue the children

Queue: B | C |

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

repeat

Queue: B | C |

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: C | D | E |

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: D | E | F | G |

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: E | F | G | H | I |

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: F | G | H | I | J | K |

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: G | H | I | J | K | L | M

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: H | I | J | K | L | M | N | O

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: I | J | K | L | M | N | O

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: J | K | L | M | N | O

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: K | L | M | N | O

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: L | M | N | O

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: L | M | N | O

And now we’ve found it!

BREADTH FIRST SEARCH
•  Use a queue to keep track of the order

•  What happens if we use a stack?
•  Depth first search! These things are

related!
•  Next week

•  Balance and the O(n) problem

