
CSE 373
APRIL 10TH – DICTIONARY ADT

ASSORTED MINUTIAE
•  HW2 due Wednesday at Midnight

TODAY’S SCHEDULE
•  Floyd’s Algorithm examples
•  Correctness proof
•  Dictionary ADT

FLOYD’S METHOD
void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 percolateDown(i,val);

 arr[hole] = val;
 }
}

FLOYD’S METHOD

•  Review: what does this do?
•  Size/2 – only nodes with children
•  Percolate down each of those nodes
•  How does this percolate down work?

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 percolateDown(i,val);

 arr[hole] = val;
 }
}

EXAMPLE
Build a heap with the values: 12,
5, 11, 3, 10, 2, 9, 4, 8, 1, 7, 6

Stick them all in the tree to make
a valid structure

In tree form for readability.
Notice:

•  Purple for node values to fix
(heap-order problem)

•  Notice no leaves are purple
•  Check/fix each non-leaf

bottom-up (6 steps here)

6 7 1 8

9 2 10 3

11 5

12

4

EXAMPLE

6 7 1 8

9 2 10 3

11 5

12

4

Purple shows the nodes that
will need to be fixed.

We don’t know which ones they
are yet, so we’ll traverse
bottom up one level at a time
and fix all the values.

Values to consider on each
level circled in blue

EXAMPLE

6 7 1 8

9 2 10 3

11 5

12

4 6 7 1 8

9 2 10 3

11 5

12

4

Step 1

Happens to already be less than it’s child

EXAMPLE

6 7 1 8

9 2 10 3

11 5

12

4

Step 2

Percolate down (notice that moves 1 up)

6 7 10 8

9 2 1 3

11 5

12

4

EXAMPLE
Step 3

Another nothing-to-do step

6 7 10 8

9 2 1 3

11 5

12

4 6 7 10 8

9 2 1 3

11 5

12

4

EXAMPLE
Step 4

Percolate down as necessary (steps 4a and 4b)

11 7 10 8

9 6 1 3

2 5

12

4 6 7 10 8

9 2 1 3

11 5

12

4

EXAMPLE
Step 5

11 7 10 8

9 6 5 3

2 1

12

4 11 7 10 8

9 6 1 3

2 5

12

4

EXAMPLE
Step 6

11 7 10 8

9 6 5 4

2 3

1

12 11 7 10 8

9 6 5 3

2 1

12

4

CORRECTNESS

•  How do we prove this works?
•  Use inductive proof

•  Base case
•  The heap property is maintained for all elements after

size/2 because they have no children
•  Step

•  When adding each element, the algorithm puts it into
the right spot

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 percolateDown(i,val);

 arr[hole] = val;
 }
}

CORRECTNESS

•  For all elements after i, the heap property should be
preserved
•  This is why we can start at size/2

•  percolateDown() ensures that each new element goes to
the right place

•  Once a loop has gotten to a node, the smallest elements
are at the top of their subtrees.

void buildHeap() {
 for(i = size/2; i>0; i--) {

 val = arr[i];
 percolateDown(i,val);

 arr[hole] = val;
 }
}

LESSONS FROM BUILDHEAP
Without buildHeap, our ADT already let clients implement their
own in O(n log n) worst case

•  Worst case is inserting better priority values later

By providing a specialized operation internal to the data
structure (with access to the internal data), we can do O(n)
worst case

•  Intuition: Most data is near a leaf, so better to percolate down

Can analyze this algorithm for:

•  Correctness and Efficiency:
•  First analysis easily proved it was O(n log n)
•  Tighter analysis shows same algorithm is O(n)

LESSONS FROM BUILDHEAP
•  Should all priority queues support

buildHeap()?
•  No downside to implementation
•  Faster than O(n log n) naïve approach
•  Not required for HW 2, but is commonly

implemented

HEAPS
•  What to know

•  How to implement all functions
•  How to analyze all functions
•  Understand the benefits of array

implementation
•  Types of client problems

•  Hospitals, server scheduling, etc…

DICTIONARY ADT
•  New abstract data type

•  Dictionary (aka Map)
•  Data – Key and Value pairs

•  Keys: must be comparable, used for lookup
•  Values: the actual data itself

•  Example (Store inventory):
•  Keys: IDs (barcodes)
•  Values: Product information

DICTIONARY ADT
•  Operations

•  insert(key, value): inserts the key, value
pair into the dictionary

•  find(key): returns the stored value for a
particular key in the dictionary, returns null if not
found.

•  delete(key): removes the key value pair
specified by the given key from the dictionary. In
this course you may assume unique keys.!

SET ADT
•  Slightly different from Dictionary
•  No values, the set only cares if a key is

present or not
•  Find, insert and delete have few differences
•  Possible to implement other functions from

sets
•  Union, intersection, difference

APPLICATIONS
•  Store information in key, value pairs

•  Very common usage pattern
•  Phone directories
•  Indexing
•  OS page tables
•  Databases

IMPLEMENTATIONS
•  Important to allow fast operations over the

keys
•  Dependent on what the client uses most
•  Could be many lookups and few inserts

•  Keys and Values should be stored together
in some way
•  Both objects in one node
•  Paired arrays (one stores keys and the other values)

IMPLEMENTATIONS
•  Simple implementations
	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 insert find delete

Unsorted	 linked-‐list	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Unsorted	 array	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Sorted	 linked	 list	

Sorted	 array	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
*	 Unless	 we	 need	 to	 check	 for	 duplicates	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

O(1)*	 O(n)	 O(n)	

O(1)*	 O(n)	 O(n)	

O(n)	 O(n)	 O(n)	

O(n)	 O(log	 n)	 O(n)	

IMPLEMENTATIONS
•  Other implementations

•  Binary Search Trees
•  Hashtables

NEXT CLASS
•  Trees and traversals
•  BST Dictionaries
•  Analysis and tree balance

