
CSE 373 
APRIL 7TH – FLOYD’S ALGORITHM 



ASSORTED MINUTIAE 
•  HW1P2 due tonight 
•  HW2 out 

•  No java libraries 



TODAY’S SCHEDULE 
•  buildHeap() 
•  Floyd’s algorithm 
•  Analysis 



REVIEW 
•  Heaps 

•  Properties 
•  Completeness 
•  Heap property 
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REVIEW 
•  Is this a heap? 
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REVIEW 
•  Heaps 

•  Properties 
•  Completeness 
•  Heap property 

•  Implementation 
•  Array (0 v 1 indexing) 
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REVIEW 
•  Array property 

•  0 indexing:  
•  left = 2*i+1!
•  right: 2*i+2!
•  parent: (i-1)/2!

•  1 indexing: 
•  left = 2*i!
•  right = 2*i +1!
•  parent: i/2!



HEAPS 
•  Operations 

•  Insert: adds a data, priority pair into the heap 



HEAPS 
•  Operations 

•  Insert: adds a data, priority pair into the heap 
•  deleteMin: returns and removes the item of 

smallest priority from the heap 
•  changePriority: changes the priority of a 

particular item in the heap 
•  What are the (worst-case) runtimes for these 

operations? 



HEAPS 
•  Insert: 

•  Add the element at the bottom of the tree 
•  “Percolate up” that element to its correct place 

•  Adding to the end of a tree?  O(1)!
•  Percolating up? O(height) O(log n)!

•  What is the height of a heap? log2 n!



HEAPS 
•  deleteMin: 

•  Move the last element up to the top of the tree 
•  Percolate that element down 
•  Return the original root of the tree. 

•  Copying element? O(1) 
•  Percolating down? O(log n) 
•  Returning element? O(1) 



HEAPS 
•  changePriority: 

•  Find the element 
•  Percolate up/down 

•  Finding in a heap? O(n) Why? 
•  Heap property does not give us the divide and 

conquer benefit 
•  Percolate up/down? O(log n) 
•  On average, is it faster to percolate up or down? 



HEAPS 
•  Facts of binary trees 

•  Increasing the height by one doubles the number 
of possible nodes 

•  Therefore, a complete binary tree has half of its 
nodes in the leaves 

•  A new piece of data is much more likely to have 
to percolate down to the bottom than be the 
smallest item in the heap 



BUILDHEAP 
•  Back to the problem from Wednesday 
•  Given an arbitrary array of size n, form 

the array into a heap 
•  Naïve approach(es): 

•  Sort the array: O(n log n)!
•  Insert each element into a new heap. 

 log n operation performed n times: O(n log n)!



•  Is it really O(n log n)? 
•  Early insertions are into empty trees O(1)! 
•  Consider a simpler example, creating a 

sorted linked list. 
•  Adding at the end of a linked list with k 

items takes O(k) operations. 
1+2+3+4+5… 

What is this summation? 

FUN FACTS! 



FUN FACTS! 

•  What does this mean? 
•  Summing k from 1 to n is still O(n2)!
•  Similarly, summing log(k) from 1 to n is 
O(n log n)  !



BUILDHEAP 
•  So a naïve buildheap takes O(n log n) 

•  Why implement at all? 
•  If we can get it O(n)! 



FLOYD’S METHOD 
•  Traverse the tree from bottom to top 

•  Reverse order in the array 
•  Start with the last node that has children. 

•  How to find? Size / 2!
•  Percolate down each node as necessary 

•  Wait! Percolate down is O(log n)! 
•  This is an O(n log n) approach! 



FLOYD’S METHOD 
•  It is O(n log n), because big O is an 

upper bound, but there is a tighter 
analysis possible! 

•  How far does each node travel (at worst) 
•  1/2 of the nodes don’t move: 

•  These are leaves – Height = 0 

•  1/4 can move at most one  
•  1/8 can move at most two … 



FLOYD’S METHOD 

•  Thanks Wolfram Alpha! 
•  Does this look like an easier summation?!



FLOYD’S METHOD 

•  This is a must know summation! 
•  1/2 + 1/4 + 1/8 + … = 1 
•  How do we use this to prove our 

complicated summation?!



FLOYD’S METHOD 
1/2 + 1/4 + 1/8 … !… + 1/2n = 1!

      1/4 + 1/8 … !… + 1/2n = 1/2!

            1/8 … !… + 1/2n = 1/4!

•  Vertical columns sum to: 
 i/2^i, which is what we want 

 
•  What is the right summation? 

•  Our original summation plus 1 
!

!



FLOYD’S METHOD 

•  This means that the number of swaps we 
perform in Floyd’s method is 2 times the 
size… So Floyd’s method is O(n)!



NEXT WEEK 

•  Guest lecturer! 
•  Proof of Floyd’s method correctness 
•  Introducing the Dictionary ADT 


