
CSE 373
APRIL 7TH – FLOYD’S ALGORITHM

ASSORTED MINUTIAE
•  HW1P2 due tonight
•  HW2 out

•  No java libraries

TODAY’S SCHEDULE
•  buildHeap()
•  Floyd’s algorithm
•  Analysis

REVIEW
•  Heaps

•  Properties
•  Completeness
•  Heap property

REVIEW

15 30

80 20

10
•  Is this a heap?

REVIEW

15 30

80 20

10
•  Is this a heap?
•  No. Why?

REVIEW
•  Is this a heap?

450

3

1

75

50

8 60

10 10

REVIEW
•  Is this a heap?
•  No. Why

450

3

1

75

50

8 60

10 10

REVIEW
•  Is this a heap?

99 60 40

80 20

10

50 700

85

REVIEW
•  Heaps

•  Properties
•  Completeness
•  Heap property

•  Implementation
•  Array (0 v 1 indexing)

REVIEW
•  Array property

G E D

C B

A

J K H I

F

L

REVIEW
•  Array property

G E D

C B

A

J K H I

F

L

7

1

2 3

4 5 6

9 8 10 11 12

REVIEW
•  Array property

G E D

C B

A

J K H I

F

L

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

REVIEW
•  Array property

•  0 indexing:
•  left = 2*i+1!
•  right: 2*i+2!
•  parent: (i-1)/2!

•  1 indexing:
•  left = 2*i!
•  right = 2*i +1!
•  parent: i/2!

HEAPS
•  Operations

•  Insert: adds a data, priority pair into the heap

HEAPS
•  Operations

•  Insert: adds a data, priority pair into the heap
•  deleteMin: returns and removes the item of

smallest priority from the heap
•  changePriority: changes the priority of a

particular item in the heap
•  What are the (worst-case) runtimes for these

operations?

HEAPS
•  Insert:

•  Add the element at the bottom of the tree
•  “Percolate up” that element to its correct place

•  Adding to the end of a tree? O(1)!
•  Percolating up? O(height) O(log n)!

•  What is the height of a heap? log2 n!

HEAPS
•  deleteMin:

•  Move the last element up to the top of the tree
•  Percolate that element down
•  Return the original root of the tree.

•  Copying element? O(1)
•  Percolating down? O(log n)
•  Returning element? O(1)

HEAPS
•  changePriority:

•  Find the element
•  Percolate up/down

•  Finding in a heap? O(n) Why?
•  Heap property does not give us the divide and

conquer benefit
•  Percolate up/down? O(log n)
•  On average, is it faster to percolate up or down?

HEAPS
•  Facts of binary trees

•  Increasing the height by one doubles the number
of possible nodes

•  Therefore, a complete binary tree has half of its
nodes in the leaves

•  A new piece of data is much more likely to have
to percolate down to the bottom than be the
smallest item in the heap

BUILDHEAP
•  Back to the problem from Wednesday
•  Given an arbitrary array of size n, form

the array into a heap
•  Naïve approach(es):

•  Sort the array: O(n log n)!
•  Insert each element into a new heap.

 log n operation performed n times: O(n log n)!

•  Is it really O(n log n)?
•  Early insertions are into empty trees O(1)!
•  Consider a simpler example, creating a

sorted linked list.
•  Adding at the end of a linked list with k

items takes O(k) operations.
1+2+3+4+5…

What is this summation?

FUN FACTS!

FUN FACTS!

•  What does this mean?
•  Summing k from 1 to n is still O(n2)!
•  Similarly, summing log(k) from 1 to n is
O(n log n) !

BUILDHEAP
•  So a naïve buildheap takes O(n log n)

•  Why implement at all?
•  If we can get it O(n)!

FLOYD’S METHOD
•  Traverse the tree from bottom to top

•  Reverse order in the array
•  Start with the last node that has children.

•  How to find? Size / 2!
•  Percolate down each node as necessary

•  Wait! Percolate down is O(log n)!
•  This is an O(n log n) approach!

FLOYD’S METHOD
•  It is O(n log n), because big O is an

upper bound, but there is a tighter
analysis possible!

•  How far does each node travel (at worst)
•  1/2 of the nodes don’t move:

•  These are leaves – Height = 0

•  1/4 can move at most one
•  1/8 can move at most two …

FLOYD’S METHOD

•  Thanks Wolfram Alpha!
•  Does this look like an easier summation?!

FLOYD’S METHOD

•  This is a must know summation!
•  1/2 + 1/4 + 1/8 + … = 1
•  How do we use this to prove our

complicated summation?!

FLOYD’S METHOD
1/2 + 1/4 + 1/8 … !… + 1/2n = 1!

 1/4 + 1/8 … !… + 1/2n = 1/2!

 1/8 … !… + 1/2n = 1/4!

•  Vertical columns sum to:
 i/2^i, which is what we want

•  What is the right summation?

•  Our original summation plus 1
!

!

FLOYD’S METHOD

•  This means that the number of swaps we
perform in Floyd’s method is 2 times the
size… So Floyd’s method is O(n)!

NEXT WEEK

•  Guest lecturer!
•  Proof of Floyd’s method correctness
•  Introducing the Dictionary ADT

