CSE 373

APRIL 3RD - ALGORITHM ANALYSIS

ASSORTED MINUTIAE

- HW1P1 due tonight at midnight
- HW1P2 due Friday at midnight
- HW2 out tonight
- Second Java review session:
 - Friday 10:30 ARC 147

TODAY'S SCHEDULE

- Algorithm Analysis, cont.
- Floyd's algorithm

REVIEW FROM LAST WEEK

- Algorithm Analysis
 - Testing is for implementations
 - Analysis is for algorithms
 - Runtime, memory and correctness
 - Best case, average case, worst case
 - Over groups of inputs, not just one

ALGORITHM ANALYSIS

- Principles of analysis
 - Determining performance behavior
 - How does an algorithm react to new data or changes?
 - Independent of language or implementation

ALGORITHM ANALYSIS

- Example: find()
 - Sorted v Unsorted
 - How is insert impacted?
 - A sorted array gives us faster find because we can use binary search
 - Can we prove that this is the case?

- Analyzing binary search.
- What is the worst case?
 - When the item is not in the list
- How long does this take to run?

Consider the algorithm

```
public int binarySearch(int[] data, int toFind){
  int low = 0; int high = data.length-1;
  while(low <= high){
      int mid = (low+high)/2;
      if(toFind>mid) low = mid+1; continue;
      else if(toFind<mid) high = mid-1; continue;
      else return mid;
}
return -1;
}</pre>
```

- What is important here?
 - At each iteration, we eliminate half of the remaining elements.
- How long will it take to reach the end?
 - At first iteration, N/2 elements remain
 - At second, N/4 elements remain
 - At the kth iteration?

- At the kth iteration:
 - N/2^k elements remain.
- When does this terminate?
 - When N/2^k = 1
- How many iterations then? Solve for k.

· Solve for k.

$$N / 2^{k} = 1$$
 $N = 2^{k}$
 $\log_{2} N = k$

- Is this exact?
- Where was the error introduced?
 - N can be things other than powers of two
 - Ceiling and floor rounding

ANALYSIS

- If this isn't exact, is it still correct?
- Yes. We care about asymptotic growth.
 - How a the runtime of an algorithm grows with big data
- To incorporate this perspective, we use bigO notation

- Informally: bigO notation denotes an upper bound for an algorithms asymptotic runtime
- For example, if an algorithm A is O(log n), that means some logarithmic function upper bounds A.

- Formally, a function f(n) is O(g(n)) if there exists a c and n_0 such that:
- For all $n \ge n_0$, $f(n) \le c*g(n)$
- To prove a function is O(g(n)), simply find the c and n₀

- Example: is $5n^3 + 2n \text{ in } O(n^4)$?
- Can we find a c, n_0 such that:
- $5n^3 + 2n \le c*n^4$ for all $n \ge n_0$

Let
$$c = 7$$
; $5n^3 + 2n \le 7n^4$

$$5n^3 + 2n < 5n^4 + 2n^4$$

Since
$$n^4 \ge n^3$$
 and $n^4 \ge n$ for $n \ge 1$

$$5n^3 + 2n \leq 7n^4$$
 for all $n \geq 1$

Therefore, $5n^3 + 2n \text{ is } O(n^4)$

This is an upper bound, so if

```
5n^3 + 2n \text{ is in } O(n^4), \text{ then}

5n^3 + 2n \text{ is in } O(n^5) \text{ and } O(n^n)
```

- $ls 5n^3 + 2n in O(n3)$?
- Yes, let c be 7 and n > 1

- Big-O is for upper bounds.
- It's equivalent for lower bounds is big Omega

Formally, a function f(n) is $\Omega(g(n))$ if there exists a c and $n_0 > 0$ such that:

• For all $n \ge n_0$, $f(n) \ge c*g(n)$

 If a function f(n) is in O(g(n)) and Ω(g(n))

- If a function f(n) is in O(g(n)) and Ω(g(n)), then g(n) is a tight bound on f(n), we call this big theta.
- Formally, if f(n) is in O(g(n)) and $\Omega(g(n))$, then f(n) is in $\theta(g(n))$
- Note that the two will have different c and n₀

- What does this help us with?
 - Sort algorithms into families
 - O(1): constant
 - O(log n): logarithmic
 - O(n) : linear
 - O(n²): quadratic
 - O(n^k): polynomial
 - O(kⁿ): exponential

- What does this help us with?
 - The constant multiple c lets us organize similar algorithms together.
 - Remember that log_a k and log_b k differ by a constant factor?
 - That makes all logs in the same family

CORRECTNESS ANALYSIS

- How do we show an algorithm is correct?
 - Need to look at the approach

BINARY SEARCH (AGAIN)

```
public int binarySearch(int[] data, int toFind){
int low = 0; int high = data.length-1;
while(low <= high){</pre>
      int mid = (low+high)/2;
      if(toFind>mid) low = mid+1; continue;
      else if(toFind<mid) high = mid-1; continue;
      else return mid;
return -1;
```

BINARY SEARCH CORRECTNESS

- Prove binary search returns the correct answer
 - Need property of sortedness
 - For all pairs i,j in the array:
 - If $A[i] \leq A[j]$, then $i \leq j$
 - Binary search always chooses the correct side
 - End case: low = high

ANALYSIS

- Let's find an interesting algorithm to analyze
- Given an array of length n, how do we make that array into a heap?
- Naïve approach?
 - Make a new heap and add each element of the array into the heap
 - How long to finish?

ANALYSIS

- Naïve approach:
 - Must add n items
 - Each add takes how long? log(n)
 - Whole operation is O(n log(n))
 - Can we do better?
 - What is better? O(n)

NEXT CLASS

- Analyzing buildHeap
- Function tradeoffs
- Precomputation