CSE 373

APRIL 3RP - ALGORITHM ANALYSIS

ASSORTED MINUTIAE

Drawn notes from last week
HW1P1 due Wed at midnight
HW1P2 due Fri at midnight

Additional Java review?

TODAY’S SCHEDULE

* Finish discussion of heaps
* Algorithm analysis
* Analyzing the heap

REVIEW FROM LAST WEEK

* Priority queue

- Data inserted with priority

* Lower items dequeue first

« Can change priorities of items

* FIFO is sacrificed in implementation

REVIEW FROM LAST WEEK

 Heap

* Tree structure with two properties:

* Completeness: Filled from left to right,
top to bottom

* Heap property: Parents are smaller than
their children (min-heap)

REVIEW FROM LAST WEEK

 Percolate up

* When a new item is inserted:

* Place the item at the next position to
preserve completeness

« Swap the item up the tree until it is larger
than its parent

REVIEW FROM LAST WEEK

 Percolate down

 When an item is deleted:

Remove the root of the tree (to be returned)
Move the last object in the tree to the root

Swap the moved piece down while it is
larger than it's smallest child

Only swap with the smallest child

HEAPS AS ARRAYS

 Because heaps are complete, they can be
represented as arrays without any gaps
in them.

* Naive implementation:
o Left child: 2%i+1
* Right child: 2%i + 2
« Parent: (i-1)/2

HEAPS AS ARRAYS

« Alternate (common) implementation:

* Put the root of the array at index 1
* Leave index O blank

 Calculating children/parent becomes:
 Left child: 2%
* Right child: 2%i + 1
« Parent: i/2

HEAPS AS ARRAYS

« Why do an array at all?

« + Memory efficiency

* + Fast accesses to data
* + Forces log n depth

* - Needs to resize

« - Can waste space

* Overall, however, better done through an
array

ALGORITHM ANALYSIS

* Important topic. Why?
* Show that an implementation is better.
« What do we mean by better?

* Fewer clock cycles
* More efficient memory usage
* Correctness

ALGORITHM ANALYSIS

 Math review

* Logarithms
* log, x =y whenx = 2Y
* How does this grow? Slowly

- Abalanced tree has a height ~log, n

* log, x differs from log, x by a
constant factor

ALGORITHM ANALYSIS

* Floor and ceiling
* Integer rounding, computers operate in
integer quantities
* Clock cycles
* Memory bytes

ALGORITHM ANALYSIS

* Floor and ceiling
* Integer rounding, computers operate in
integer quantities
* Clock cycles
* Memory bytes

Floor : X] denotes largest integer < x

Ceiling: [X] denotes smallest integer > x

ALGORITHM ANALYSIS

* Operations

* Arithmetic
« Comparisons
* Memory reads/writes

 Loops and functions are just chains of
these operations.

ALGORITHM ANALYSIS

Int value = 0;
for(int 1 = 0; 1 < 10; 1i++){

value++;

How long does this take?

ALGORITHM ANALYSIS

Int value = 0;

for(iint 1 = 0; i < N; i++){
value++;

}

How long does this take?

ALGORITHM ANALYSIS

* Principles of analysis

« Determining performance behavior

* How does an algorithm react to new data
or changes?

* Independent of language or
Implementation

ALGORITHM ANALYSIS

Example: find()
Suppose an array with 5 elements

One implementation has a sorted array,
the other is unsorted

For which one will find() be faster?
How long will it take?

ALGORITHM ANALYSIS
. Find(1)

ALGORITHM ANALYSIS

* Find(1)
 How many operations?

ALGORITHM ANALYSIS
. Find(4)?

ALGORITHM ANALYSIS

 Not a good representation of how the
algorithm actually behaves.

 Want to access the algorithm on the
whole, not just over a few inputs

* This is why testing alone isn’t enough

ALGORITHM ANALYSIS

 Possible solutions?

* Average case: find the average
performance over all inputs

* Worst case: how long the program takes
to complete the worst case problems.

ALGORITHM ANALYSIS

 Possible solutions?
* Average case: can be difficult to compute

ALGORITHM ANALYSIS

 Possible solutions?

» Average case: can be difficult to compute

* What is the average case for binary
search?

ALGORITHM ANALYSIS

 Possible solutions?

* Worst case: is most commonly used

- Easily compared and gives a good
estimate of the robustness of an algorithm

ALGORITHM ANALYSIS

« Worst case runtime here?

ALGORITHM ANALYSIS

« Worst case runtime here?

 Are we convinced one is better just
looking at 5 elements?

1 2 3 4 S

ASYMPTOTIC ANALYSIS

« Want to know how algorithms behave
with big data

 How much more does an additional
element in our data structure cost us?

ASYMPTOTIC ANALYSIS

« Consider find() for sorted v. unsorted
arrays

Which is better?

Unsorted grows linearly — if we add one
more element to the list, we expect that
the algorithm will take one more
operation to complete

How much longer is an extra element in
the sorted case?

ASYMPTOTIC ANALYSIS

Consider find() for sorted v. unsorted
arrays

* As trees grow exponentially in size
they grow logarithmically in height

- Height is what determines our runtime

ASYMPTOTIC ANALYSIS

« Consider find() for sorted v. unsorted
arrays

 We call the unsorted case: linear time or
O(n) time

* We call the sorted case: logarithmic time
or O(log n) time

NEXT CLASS

 Formalizing big-O notation
 Looking at heaps and other algorithms

