CSE 373

APRIL 3RD – ALGORITHM ANALYSIS

ASSORTED MINUTIAE

- Drawn notes from last week
- HW1P1 due Wed at midnight
- HW1P2 due Fri at midnight
- Additional Java review?

TODAY'S SCHEDULE

- Finish discussion of heaps
- Algorithm analysis
- Analyzing the heap

- Priority queue
 - Data inserted with priority
 - Lower items dequeue first
 - Can change priorities of items
 - FIFO is sacrificed in implementation

- Heap
 - Tree structure with two properties:
 - Completeness: Filled from left to right, top to bottom
 - Heap property: Parents are smaller than their children (min-heap)

Percolate up

- When a new item is inserted:
 - Place the item at the next position to preserve completeness
 - Swap the item up the tree until it is larger than its parent

- Percolate down
 - When an item is deleted:
 - Remove the root of the tree (to be returned)
 - Move the last object in the tree to the root
 - Swap the moved piece down while it is larger than it's smallest child
 - Only swap with the smallest child

HEAPS AS ARRAYS

- Because heaps are complete, they can be represented as arrays without any gaps in them.
- Naïve implementation:
 - Left child: 2*i+1
 - Right child: 2*i + 2
 - Parent: (i-1)/2

HEAPS AS ARRAYS

- Alternate (common) implementation:
 - Put the root of the array at index 1
 - Leave index 0 blank
 - Calculating children/parent becomes:
 - Left child: 2*i
 - Right child: 2*i + 1
 - Parent: i/2

HEAPS AS ARRAYS

- Why do an array at all?
 - + Memory efficiency
 - + Fast accesses to data
 - + Forces log n depth
 - Needs to resize
 - Can waste space
- Overall, however, better done through an array

- Important topic. Why?
 - Show that an implementation is better.
- What do we mean by better?
 - Fewer clock cycles
 - More efficient memory usage
 - Correctness

- Math review
- Logarithms
 - $\log_2 x = y$ when $x = 2^y$
 - How does this grow? Slowly
 - A balanced tree has a height ~log₂ n
 - log_k x differs from log_j x by a constant factor

- Floor and ceiling
 - Integer rounding, computers operate in integer quantities
 - Clock cycles
 - Memory bytes

- Floor and ceiling
 - Integer rounding, computers operate in integer quantities
 - Clock cycles
 - Memory bytes

Floor : [X] denotes largest integer $\leq x$

Ceiling: [X] denotes smallest integer > x

- Operations
 - Arithmetic
 - Comparisons
 - Memory reads/writes
- Loops and functions are just chains of these operations.

```
Int value = 0;
for(int i = 0; i < 10; i++){
    value++;
}
```

How long does this take?

```
Int value = 0;
for(iint i = 0; i < N; i++){
    value++;
}
```

How long does this take?

- Principles of analysis
 - Determining performance behavior
 - How does an algorithm react to new data or changes?
 - Independent of language or implementation

- Example: find()
- Suppose an array with 5 elements
- One implementation has a sorted array, the other is unsorted
- For which one will find() be faster?
- How long will it take?

• Find(1)

1	2	3	4	5			
---	---	---	---	---	--	--	--

	4	2	5	3	1			
--	---	---	---	---	---	--	--	--

- Find(1)
- How many operations?

1 2 3 4	5		
---------	---	--	--

	4	2	5	3	1			
--	---	---	---	---	---	--	--	--

• Find(4)?

1	2	3	4	5			
---	---	---	---	---	--	--	--

	4	2	5	3	1			
--	---	---	---	---	---	--	--	--

- Not a good representation of how the algorithm actually behaves.
- Want to access the algorithm on the whole, not just over a few inputs
- This is why testing alone isn't enough

- Possible solutions?
 - Average case: find the average performance over all inputs
 - Worst case: how long the program takes to complete the worst case problems.

- Possible solutions?
 - Average case: can be difficult to compute

- Possible solutions?
 - Average case: can be difficult to compute
 - What is the average case for binary search?

- Possible solutions?
 - Worst case: is most commonly used
 - Easily compared and gives a good estimate of the robustness of an algorithm

• Worst case runtime here?

1	2	3	4	5			
---	---	---	---	---	--	--	--

	4	2	5	3	1			
--	---	---	---	---	---	--	--	--

- Worst case runtime here?
- Are we convinced one is better just looking at 5 elements?

1 2 3	4	5			
-------	---	---	--	--	--

4	2	5	3	1		

- Want to know how algorithms behave with big data
- How much more does an additional element in our data structure cost us?

- Consider find() for sorted v. unsorted arrays
 - Which is better?
 - Unsorted grows linearly if we add one more element to the list, we expect that the algorithm will take one more operation to complete
 - How much longer is an extra element in the sorted case?

- Consider find() for sorted v. unsorted arrays
 - As trees grow exponentially in size they grow logarithmically in height
 - Height is what determines our runtime

- Consider find() for sorted v. unsorted arrays
 - We call the unsorted case: linear time or O(n) time
 - We call the sorted case: logarithmic time or O(log n) time

NEXT CLASS

- Formalizing big-O notation
- Looking at heaps and other algorithms