
CSE 373
APRIL 3RD – ALGORITHM ANALYSIS

ASSORTED MINUTIAE
•  Drawn notes from last week
•  HW1P1 due Wed at midnight
•  HW1P2 due Fri at midnight
•  Additional Java review?

TODAY’S SCHEDULE
•  Finish discussion of heaps
•  Algorithm analysis
•  Analyzing the heap

REVIEW FROM LAST WEEK
•  Priority queue

•  Data inserted with priority
•  Lower items dequeue first
•  Can change priorities of items
•  FIFO is sacrificed in implementation

REVIEW FROM LAST WEEK
•  Heap

•  Tree structure with two properties:
•  Completeness: Filled from left to right,

top to bottom
•  Heap property: Parents are smaller than

their children (min-heap)

REVIEW FROM LAST WEEK
•  Percolate up

•  When a new item is inserted:
•  Place the item at the next position to

preserve completeness
•  Swap the item up the tree until it is larger

than its parent

REVIEW FROM LAST WEEK
•  Percolate down

•  When an item is deleted:
•  Remove the root of the tree (to be returned)
•  Move the last object in the tree to the root
•  Swap the moved piece down while it is

larger than it’s smallest child
•  Only swap with the smallest child

HEAPS AS ARRAYS
•  Because heaps are complete, they can be

represented as arrays without any gaps
in them.

•  Naïve implementation:
•  Left child: 2*i+1
•  Right child: 2*i + 2
•  Parent: (i-1)/2

HEAPS AS ARRAYS
•  Alternate (common) implementation:

•  Put the root of the array at index 1
•  Leave index 0 blank
•  Calculating children/parent becomes:

•  Left child: 2*i
•  Right child: 2*i + 1
•  Parent: i/2

HEAPS AS ARRAYS
•  Why do an array at all?

•  + Memory efficiency
•  + Fast accesses to data
•  + Forces log n depth
•  - Needs to resize
•  - Can waste space

•  Overall, however, better done through an
array

ALGORITHM ANALYSIS
•  Important topic. Why?

•  Show that an implementation is better.
•  What do we mean by better?

•  Fewer clock cycles
•  More efficient memory usage
•  Correctness

ALGORITHM ANALYSIS
•  Math review
•  Logarithms

•  log2 x = y when x = 2y!

•  How does this grow? Slowly
•  A balanced tree has a height ~log2 n
•  logk x differs from logj x by a

constant factor

ALGORITHM ANALYSIS
•  Floor and ceiling

•  Integer rounding, computers operate in
integer quantities

•  Clock cycles
•  Memory bytes

!

ALGORITHM ANALYSIS
•  Floor and ceiling

•  Integer rounding, computers operate in
integer quantities

•  Clock cycles
•  Memory bytes

Floor : ⎣X⎦ denotes largest integer < x
Ceiling: ⎡X⎤ denotes smallest integer > x

!

ALGORITHM ANALYSIS
•  Operations

•  Arithmetic
•  Comparisons
•  Memory reads/writes

•  Loops and functions are just chains of
these operations.

!

ALGORITHM ANALYSIS
Int value = 0;!

for(int i = 0; i < 10; i++){!

! value++; !!

}!

!

How long does this take?

!

ALGORITHM ANALYSIS
Int value = 0;!

for(iint i = 0; i < N; i++){!

! value++; !!

}!

!

How long does this take?

!

ALGORITHM ANALYSIS
•  Principles of analysis

•  Determining performance behavior
•  How does an algorithm react to new data

or changes?
•  Independent of language or

implementation

!

ALGORITHM ANALYSIS
•  Example: find()
•  Suppose an array with 5 elements
•  One implementation has a sorted array,

 the other is unsorted
•  For which one will find() be faster?
•  How long will it take?

!

ALGORITHM ANALYSIS

4 2 5 3 1

1 2 3 4 5

•  Find(1)

!

ALGORITHM ANALYSIS

4 2 5 3 1

1 2 3 4 5

•  Find(1)
•  How many operations?

!

ALGORITHM ANALYSIS

4 2 5 3 1

1 2 3 4 5

•  Find(4)?

!

ALGORITHM ANALYSIS
•  Not a good representation of how the

algorithm actually behaves.
•  Want to access the algorithm on the

whole, not just over a few inputs
•  This is why testing alone isn’t enough

!

ALGORITHM ANALYSIS
•  Possible solutions?

•  Average case: find the average
performance over all inputs

•  Worst case: how long the program takes
to complete the worst case problems.

!

ALGORITHM ANALYSIS
•  Possible solutions?

•  Average case: can be difficult to compute

!

ALGORITHM ANALYSIS
•  Possible solutions?

•  Average case: can be difficult to compute
•  What is the average case for binary

search?

!

ALGORITHM ANALYSIS
•  Possible solutions?

•  Worst case: is most commonly used
•  Easily compared and gives a good

estimate of the robustness of an algorithm

!

ALGORITHM ANALYSIS

4 2 5 3 1

1 2 3 4 5

•  Worst case runtime here?

!

ALGORITHM ANALYSIS

4 2 5 3 1

1 2 3 4 5

•  Worst case runtime here?
•  Are we convinced one is better just

looking at 5 elements?

!

ASYMPTOTIC ANALYSIS
•  Want to know how algorithms behave

with big data
•  How much more does an additional

element in our data structure cost us?

!

ASYMPTOTIC ANALYSIS
•  Consider find() for sorted v. unsorted

arrays
•  Which is better?
•  Unsorted grows linearly – if we add one

more element to the list, we expect that
the algorithm will take one more
operation to complete

•  How much longer is an extra element in
the sorted case?

!

ASYMPTOTIC ANALYSIS
•  Consider find() for sorted v. unsorted

arrays
•  As trees grow exponentially in size

 they grow logarithmically in height
•  Height is what determines our runtime

!

ASYMPTOTIC ANALYSIS
•  Consider find() for sorted v. unsorted

arrays
•  We call the unsorted case: linear time or

O(n) time
•  We call the sorted case: logarithmic time

or O(log n) time

!

NEXT CLASS
•  Formalizing big-O notation
•  Looking at heaps and other algorithms

!

