
CSE 373
MARCH 29 – TESTING AND PRIORITY
QUEUES

ASSORTED MINUTIAE
•  Midterm exam:

•  April 28th; 2:30 – 3:20
•  Canvas

•  Site is up – HW1 out after class
•  143 Workshop

•  Late this week or early next

ASSORTED MINUTIAE
•  HW 1

•  Two parts
•  Implementation and Testing
•  Part 1 (143 review)
•  Part 2 (Testing)

TODAY’S SCHEDULE
•  Circular Queues
•  Software Testing
•  New ADT: Priority Queue

CONTINUING FROM
LAST WEEK
•  Stacks and Queues
•  Linked List v. Array Implementation
•  Design decisions and “resizing”
•  Alternating push and pop situation

CIRCULAR QUEUES

CIRCULAR QUEUES

Front Back

CIRCULAR QUEUES

Front Back

CIRCULAR QUEUES

Front Back

Why this way?
What function to front and back serve?

CIRCULAR QUEUES

Front Back

enqueue(4)

CIRCULAR QUEUES

4

Front Back

Which operations will move what pointers?

CIRCULAR QUEUES

4

Front Back

Let’s do several enqueues

CIRCULAR QUEUES

4 5 9 2 3 1 6

Front Back

What happens now, on enqueue(7)?

CIRCULAR QUEUES

4 5 9 2 3 1 6 7

Front Back

Problems here?
How to implement?

CIRCULAR QUEUES

4 5 9 2 3 1 6 7

Front Back

The queue is full, but it is the same
situation (front == back) as when the queue
is empty. This is a boundary condition.

CIRCULAR QUEUES

4 5 9 2 3 1 6 7

Front Back

We have to resize the list (or deny the add)
if we get another enqueue.

CIRCULAR QUEUES

4 5 9 2 3 1 6 7

Front Back

What if we dequeue some items?

CIRCULAR QUEUES

5 9 2 3 1 6 7

Front Back

Dequeue() outputs 4
Is the 4 really “deleted”?

CIRCULAR QUEUES

9 2 3 1 6 7

Front Back

Dequeue outputs 5

CIRCULAR QUEUES

9 2 3 1 6 7

Front Back

Now we’ve freed up some space and can
enqueue more

CIRCULAR QUEUES
•  By moving the front and back pointers,

we can utilize all of the space in the array
•  Advantages over a linked list?

•  Fixed number of items
•  Small data (Memory efficiency)

•  BONUS: What is the memory overhead of
the linked list?

TESTING
•  Implementation is great if it works on the

first try
•  In a large implementation, what is

causing the problem?
•  Object oriented programming allows

modularity – good testing can pinpoint
bugs to particular modules

TESTING
•  Two primary types of testing

•  Black box
•  Behavior only, no peeking into the code

•  White box (or clear box)
•  Where there is an understanding of the

implementation that can be leveraged
for testing

TESTING
•  Part 1 on the homework will involve

writing tests for your own
implementation. (White box)

•  Part 2 will involve testing java .class files.

•  Only the interface (TestQueue) and
expected behavior are known

TESTING
•  Isolate the problem

•  Write specific tests
•  Running the whole program doesn’t help

narrow down problems
•  What are expected test cases?

•  In general: [0,1,n] are good starting points
•  White box testing can take advantage of

boundary cases (e.g. the resize of an
array)

TESTING
•  Many test cases (and large ones)

•  You can prove that an algorithm is
correct, but you cannot necessarily prove
an arbitrary implementation is correct

•  More inputs can increase certainty
•  Adversarial testing
•  The client is not your friend

PRIORITY QUEUE
•  New ADT
•  Objects in the priority queue have:

•  Data
•  Priority

•  Conditions
•  Lower priority items should dequeue first
•  Change priority?

PRIORITY QUEUE
•  Applications?

•  Hospitals
•  CSE course overloads
•  Etc…

PRIORITY QUEUE
•  How to implement?

•  Keep data sorted (somehow)
•  Array?

•  Inserting into the middle is costly
 (must move other items)

•  Linked list?
•  Must iterate through entire list to find place
•  Cannot move backward if priority changes

PRIORITY QUEUE
•  These implementations will all give us the

behavior we want as far as the ADT, but
they may be poor design decisions

•  Any other data structures to try?

NEXT CLASS
•  Improve upon LL v. Array
•  ADTs v. Data Structures
•  DS properties and their importance
•  Implementation impacts

