
CSE 373
JUNE 2ND – EXAM REVIEW

ASSORTED MINUTIAE
•  Exam Review – Today 4:30 – 6:00 EEB 105
•  HWs 5 and 6 back this weekend
•  Submit regrade requests for before exam

time
•  Old patches gone through, recheck grades
•  Extra assignment due tonight at midnight

•  No late days allowed
•  “Closes” at 12:30, but anything after 12:00 is

up to my judgement

ASSORTED MINUTIAE
•  Course evaluations

•  Very important to this class and this
department

•  Above all, they’re very important to me
•  Should only take ~5 minutes, and it’s very

valuable feedback

TODAY’S LECTURE
•  Exam Review

•  Important topics
•  Exam is comprehensive, but review will focus

on the new material

EXAM FORMAT
•  1:50 to complete 12 problems
•  First question is short answer, which has

many parts of varying difficulty, it is not
likely to be the easiest

•  Runtime and debugging questions
•  Technical questions
•  Algorithm Design question

EXAM FORMAT
•  We will be our most strict grading yet, don’t

make any assumptions that aren’t explicit
•  Analysis work needs to be thorough and

concrete, recurrences and summations will
likely be required

•  Show all of your work. Many algorithms are
trivial to solve by hand. Just providing “the
solution” will not earn points. Algorithms are
about process.

EXAM FORMAT
•  A time crunch is likely

•  There are many topics that need to be
covered

•  Get down things that you know, and if you
don’t make progress move on and come
back

TOPICS
•  Definitions

•  ADT – Abstract Data Type – Describes a certain
set of functionality and behavior

•  e.g. PriorityQueue
•  Data structure – Theoretical storage method that

implements an ADT.
•  e.g. Heap

•  Implementation – Low-level design decisions that
are often language dependent

•  e.g. Using an array for the heap

TOPICS
•  Stacks and Queues

•  LIFO and FIFO ordered storage respectively
•  Can be implemented with arrays or linked lists
•  Understand the desired behavior and how to

implement these structures

TOPICS
•  Priority Queues

•  Insert(key, priority)
•  findMin()
•  deleteMin()
•  changePriority()

TOPICS
•  Heaps

•  Usually array implementations
•  Heap property
•  Complete trees
•  Runtimes and buildHeap()

TOPICS
•  Algorithm analysis

•  bigO, bigOmega, bigTheta
•  c and n0

•  Asymptotic behavior
•  Memory analysis
•  Recurrences
•  Summations

TOPICS
•  Dictionary

•  ADT- insert(k,v), find(k) delete(k)
•  Many possible underlying data structures
•  Different runtimes (and support)

TOPICS
•  Binary search trees

•  Best and worst case
•  Traversals

•  Balance property – AVL
•  Rotations and correctness

TOPICS
•  Hashtables

•  Linear, quadratic, secondary hashing
•  Separate chaining
•  Load factor and resizing
•  Primary and Secondary clustering
•  Runtime and memory constraints

TOPICS
•  Graphs

•  Notation G(V,E)
•  Traversals
•  Topological Sorts
•  Properties

•  Directed v. Undirected
•  Dense v. Sparse
•  Weighted v. Unweighted
•  Cyclic v. Acyclic

TOPICS
•  Graphs

•  Algorithms
•  Dijkstra’s – path finding
•  Prim’s and Kruskal’s – Minimum spanning trees

•  Know their runtimes and the data structures they
rely on for those runtimes…

TOPICS
•  Iterators

•  hasNext(), next()
•  Can iterate over any domain
•  Usually helpful to get connected and relevant

data together
•  Can break up processing for each call, rather

than doing all the processing at once
•  May not always be advised

TOPICS
•  Union find

•  ADT – Disjoint sets
•  Partitions
•  Weighted Union
•  Path compression
•  Uptree – single array representation

TOPICS
•  Sorting

•  Insertion and Selection
•  Heap, Merge and Quick
•  Bucket and Radix

•  Properties
•  Comparison sorts
•  Stable
•  In place
•  Interruptible (top k)

TOPICS
•  Analysis

•  Lower bound for comparison sorts
•  Memory usages for sorting
•  Best and worst case runtimes

TOPICS
•  Testing

•  White box v. Black box
•  Identifying edge cases
•  Difficulties and techniques

•  Debugging
•  Programming process
•  Understanding code and potential problems

TOPICS
•  Memory

•  Temporal and Spatial localities
•  Pages and their use
•  Tiered caching
•  Impact on cloud computing

TOPICS
•  Algorithm Design

•  How can you approach the problem?
•  Guess and check (Approximation)
•  Brute Force (Linear Work)
•  Divide and Conquer
•  Greedy algorithms (make best decision for a

local sub-problem)
•  Randomization, Las Vegas and Monte Carlo
•  Preprocessing

TOPICS
•  Algorithm Design

•  Find an approach to the problem that finds
the solution

•  Understand what the edge cases are
•  Be able to analyze best-case, worst-case

and memory usage of your algorithm
•  Randomization is okay if you can show it’s

faster than a more clever solution.

STRATEGIES
•  Go through the exam from easiest to hardest

•  Problems in the middle may be the easiest
•  Be as thorough as possible, if you think it’s

relevant and correct, include it
•  Algorithm Design problem is as much about

analysis as it is about clever solutions, so
don’t leave that done poorly

•  Think about what things make certain
algorithms tricky – highly likely for this final

FINAL WORDS
•  Great quarter!
•  Stressful week

•  Nothing feels better than walking out of an
exam and…

•  Filling out course evaluations!
•  Course has been tough

•  But you have learned a lot
•  and you’re going to show us on Tuesday

FINAL WORDS
•  Good luck!
•  Have a nice summer!

