
CSE 373
MAY 26TH –NON-COMPARISON SORTING

ASSORTED MINUTIAE
•  HW6 Out – Due next Wednesday

•  No Java Libraries

ASSORTED MINUTIAE
•  HW6 Out – Due next Wednesday

•  No Java Libraries
•  Two exam review sessions

•  Wednesday: 1:00 – 2:20 – CMU 120
•  Friday: 4:30 – 6:20 – EEB 105

TODAY
•  Non-comparison sorts

SORTING
•  “Slow” sorts

SORTING
•  “Slow” sorts

•  Insertion
•  Selection

SORTING
•  “Slow” sorts

•  Insertion
•  Selection

•  “Fast” sorts

SORTING
•  “Slow” sorts

•  Insertion
•  Selection

•  “Fast” sorts
•  Quick
•  Merge
•  Heap

SORTING
•  “Slow” sorts

•  Insertion
•  Selection

•  “Fast” sorts
•  Quick
•  Merge
•  Heap

•  These are all comparison sorts, can’t do
better than O(n log n)

SORTING
•  Non-comparison sorts

SORTING
•  Non-comparison sorts

•  If we know something about the data, we
don’t strictly need to compare objects to each
other

SORTING
•  Non-comparison sorts

•  If we know something about the data, we
don’t strictly need to compare objects to each
other

•  If there are only a few possible values and
we know what they are, we can just sort by
identifying the value

SORTING
•  Non-comparison sorts

•  If we know something about the data, we
don’t strictly need to compare objects to each
other

•  If there are only a few possible values and
we know what they are, we can just sort by
identifying the value

•  If the data are strings and ints of finite length,
then we can take advantage of their sorted
order.

SORTING
•  Two sorting techniques we use to this end

SORTING
•  Two sorting techniques we use to this end

•  Bucket sort

SORTING
•  Two sorting techniques we use to this end

•  Bucket sort
•  Radix sort

SORTING
•  Two sorting techniques we use to this end

•  Bucket sort
•  Radix sort

•  If the data is sufficiently structured, we can
get O(n) runtimes

BUCKETSORT
If all values to be sorted are known to be integers between 1
and K (or any small range):

•  Create an array of size K
•  Put each element in its proper bucket (a.k.a. bin)
•  If data is only integers, no need to store more than a count of

how times that bucket has been used

Output result via linear pass through array of buckets

count array
1 3
2 1
3 2
4 2
5 3

•  Example:
K=5
input (5,1,3,4,3,2,1,1,5,4,5)

 output: 1,1,1,2,3,3,4,4,5,5,5

ANALYZING BUCKET SORT
Overall: O(n+K)

•  Linear in n, but also linear in K

Good when K is smaller (or not much larger) than n

•  We don’t spend time doing comparisons of duplicates

Bad when K is much larger than n
•  Wasted space; wasted time during linear O(K) pass

For data in addition to integer keys, use list at each
bucket

BUCKET SORT
Most real lists aren’t just keys; we have data
Each bucket is a list (say, linked list)
To add to a bucket, insert in O(1) (at beginning, or keep pointer to
last element)

count array

1

2

3

4

5

•  Example: Movie ratings; scale 1-5
Input:

 5: Casablanca
 3: Harry Potter movies
 5: Star Wars Original Trilogy
 1: Rocky V

Rocky V

Harry Potter

Casablanca Star Wars

• Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star
Wars
• Easy to keep ‘stable’; Casablanca still before Star Wars

RADIX SORT
Radix = “the base of a number system”

•  Examples will use base 10 because we are used to that
•  In implementations use larger numbers

•  For example, for ASCII strings, might use 128

Idea:

•  Bucket sort on one digit at a time
•  Number of buckets = radix
•  Starting with least significant digit
•  Keeping sort stable

•  Do one pass per digit
•  Invariant: After k passes (digits), the last k digits are

sorted

RADIX SORT EXAMPLE
Radix = 10

Input: 478, 537, 9, 721, 3, 38, 143, 67

3 passes (input is 3 digits at max), on each pass, stable sort the input highlighted
in yellow

4 7 8
5 3 7
0 0 9
7 2 1
0 0 3
0 3 8
1 4 3
0 6 7

7 2 1
0 0 3
1 4 3
5 3 7
0 6 7
4 7 8
0 3 8
0 0 9

0 0 3
0 0 9
7 2 1
5 3 7
0 3 8
1 4 3
0 6 7
4 7 8

0 0 3
0 0 9
0 3 8
0 6 7
1 4 3
4 7 8
5 3 7
7 2 1

ANALYSIS
Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not
•  Example: Strings of English letters up to length 15

•  Run-time proportional to: 15*(52 + n)
•  This is less than n log n only if n > 33,000
•  Of course, cross-over point depends on constant factors of the

implementations

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

O(n log n) sorts

•  Heap sort, in-place but not stable nor parallelizable
•  Merge sort, not in place but stable and works as external sort
•  Quick sort, in place but not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

O(n log n) sorts

•  Heap sort, in-place but not stable nor parallelizable
•  Merge sort, not in place but stable and works as external sort
•  Quick sort, in place but not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies
Ω (n log n) is worst-case and average lower-bound for sorting
by comparisons

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

O(n log n) sorts
•  Heap sort, in-place but not stable nor parallelizable
•  Merge sort, not in place but stable and works as external sort
•  Quick sort, in place but not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies
Ω (n log n) is worst-case and average lower-bound for sorting by
comparisons
Non-comparison sorts

•  Bucket sort good for small number of possible key values
•  Radix sort uses fewer buckets and more phases

Best way to sort? It depends!

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

O(n log n) sorts
•  Heap sort, in-place but not stable nor parallelizable
•  Merge sort, not in place but stable and works as external sort
•  Quick sort, in place but not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies
Ω (n log n) is worst-case and average lower-bound for sorting by
comparisons
Non-comparison sorts

•  Bucket sort good for small number of possible key values
•  Radix sort uses fewer buckets and more phases

Best way to sort? It depends!

ALGORITHM DESIGN
•  Solving well known problems is great, but

how can we use these lessons to approach
new problems?

ALGORITHM DESIGN
•  Solving well known problems is great, but

how can we use these lessons to approach
new problems?
•  Guess and Check

ALGORITHM DESIGN
•  Solving well known problems is great, but

how can we use these lessons to approach
new problems?
•  Guess and Check (Brute Force)

ALGORITHM DESIGN
•  Solving well known problems is great, but

how can we use these lessons to approach
new problems?
•  Guess and Check (Brute Force)
•  Linear Solving

ALGORITHM DESIGN
•  Solving well known problems is great, but

how can we use these lessons to approach
new problems?
•  Guess and Check (Brute Force)
•  Linear Solving
•  Divide and Conquer

ALGORITHM DESIGN
•  Solving well known problems is great, but

how can we use these lessons to approach
new problems?
•  Guess and Check (Brute Force)
•  Linear Solving
•  Divide and Conquer
•  Randomization and Approximation

ALGORITHM DESIGN
•  Solving well known problems is great, but

how can we use these lessons to approach
new problems?
•  Guess and Check (Brute Force)
•  Linear Solving
•  Divide and Conquer
•  Randomization and Approximation
•  Dynamic Programming

LINEAR SOLVING
•  Basic linear approach to problem solving

LINEAR SOLVING
•  Basic linear approach to problem solving
•  If the decider creates a set of correct

answers, find one at a time

LINEAR SOLVING
•  Basic linear approach to problem solving
•  If the decider creates a set of correct

answers, find one at a time
•  Selection sort: find the lowest element at

each run through
•  Sometimes, the best solution

•  Find the smallest element of an unsorted
array

ALGORITHM DESIGN
•  Which approach should be used comes

down to how difficult the problem is

ALGORITHM DESIGN
•  Which approach should be used comes

down to how difficult the problem is
•  How do we describe problem difficulty?

•  P : Set of problems that can be solved in
polynomial time

ALGORITHM DESIGN
•  Which approach should be used comes

down to how difficult the problem is
•  How do we describe problem difficulty?

•  P : Set of problems that can be solved in
polynomial time

•  NP : Set of problems that can be verified in
polynomial time

ALGORITHM DESIGN
•  Which approach should be used comes

down to how difficult the problem is
•  How do we describe problem difficulty?

•  P : Set of problems that can be solved in
polynomial time

•  NP : Set of problems that can be verified in
polynomial time

•  EXP: Set of problems that can be solved in
exponential time

ALGORITHM DESIGN
•  Some problems are provably difficult

ALGORITHM DESIGN
•  Some problems are provably difficult

•  Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

ALGORITHM DESIGN
•  Some problems are provably difficult

•  Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

•  At each move, the computer needs to
approximate the best move

ALGORITHM DESIGN
•  Some problems are provably difficult

•  Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

•  At each move, the computer needs to
approximate the best move

•  Certainty always comes at a price

APPROXIMATION DESIGN
•  What is approximated in the chess game?

APPROXIMATION DESIGN
•  What is approximated in the chess game?

•  Board quality – If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

APPROXIMATION DESIGN
•  What is approximated in the chess game?

•  Board quality – If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

•  It is very difficult, branching factor for chess
is ~35

APPROXIMATION DESIGN
•  What is approximated in the chess game?

•  Board quality – If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

•  It is very difficult, branching factor for chess
is ~35

•  Look as many moves into the future as time
allows to see which move yields the best
outcome

APPROXIMATION DESIGN
•  Recognize what piece of information is

costly and useful for your algorithm

APPROXIMATION DESIGN
•  Recognize what piece of information is

costly and useful for your algorithm
•  Consider if there is a cheap way to estimate

that information

APPROXIMATION DESIGN
•  Recognize what piece of information is

costly and useful for your algorithm
•  Consider if there is a cheap way to estimate

that information
•  Does your client have a tolerance for error?
•  Can you map this problem to a similar

problem?
•  “Greedy” algorithms are often approximators

RANDOMIZATION DESIGN
•  Randomization is also another approach

RANDOMIZATION DESIGN
•  Randomization is also another approach

•  Selecting a random pivot in quicksort gives
us more certainty in the runtime

RANDOMIZATION DESIGN
•  Randomization is also another approach

•  Selecting a random pivot in quicksort gives
us more certainty in the runtime

•  This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

RANDOMIZATION DESIGN
•  Randomization is also another approach

•  Selecting a random pivot in quicksort gives
us more certainty in the runtime

•  This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

•  Two types of randomized algorithms
•  Las Vegas – correct result in random time

RANDOMIZATION DESIGN
•  Randomization is also another approach

•  Selecting a random pivot in quicksort gives
us more certainty in the runtime

•  This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

•  Two types of randomized algorithms
•  Las Vegas – correct result in random time
•  Montecarlo – estimated result in deterministic

time

RANDOMIZATION DESIGN
•  Can we make a Montecarlo quicksort?

RANDOMIZATION DESIGN
•  Can we make a Montecarlo quicksort?

•  Runs O(n log n) time, but not guaranteed to
be correct

RANDOMIZATION DESIGN
•  Can we make a Montecarlo quicksort?

•  Runs O(n log n) time, but not guaranteed to
be correct

•  Terminate a random quicksort early!

RANDOMIZATION DESIGN
•  Can we make a Montecarlo quicksort?

•  Runs O(n log n) time, but not guaranteed to
be correct

•  Terminate a random quicksort early!
•  If you haven’t gotten the problem in some

constrained time, just return what you have.

RANDOMIZATION DESIGN
•  How close is a sort?
•  If we say a list is 90% sorted, what do we

mean?

RANDOMIZATION DESIGN
•  How close is a sort?
•  If we say a list is 90% sorted, what do we

mean?
•  90% of elements are smaller than the object

to the right of it?

RANDOMIZATION DESIGN
•  How close is a sort?
•  If we say a list is 90% sorted, what do we

mean?
•  90% of elements are smaller than the object

to the right of it?
•  The longest sorted subsequence is 90% of

the length?

RANDOMIZATION DESIGN
•  How close is a sort?
•  If we say a list is 90% sorted, what do we

mean?
•  90% of elements are smaller than the object

to the right of it?
•  The longest sorted subsequence is 90% of

the length?
•  Analysis for these problems can be very

tricky, but it’s an important approach

ALGORITHMS
•  There aren’t many easy problems left!
•  Understand the tools for problem solving

ALGORITHMS
•  There aren’t many easy problems left!
•  Understand the tools for problem solving
•  Eliminate as many non-feasible solutions as

possible

ALGORITHMS
•  There aren’t many easy problems left!
•  Understand the tools for problem solving
•  Eliminate as many non-feasible solutions as

possible
•  Understand, that some problems are too

difficult for a fast, elegant solution

ALGORITHMS
•  There aren’t many easy problems left!
•  Understand the tools for problem solving
•  Eliminate as many non-feasible solutions as

possible
•  Understand, that some problems are too

difficult for a fast, elegant solution
•  Academics are great for providing ideas, but

sometimes better asymptotic runtimes don’t
become apparent until n > 1010

HARDWARE CONSTRAINTS
•  So far, we’ve taken for granted that memory

access in the computer is constant and
easily accessible

HARDWARE CONSTRAINTS
•  So far, we’ve taken for granted that memory

access in the computer is constant and
easily accessible
•  This isn’t always true!

HARDWARE CONSTRAINTS
•  So far, we’ve taken for granted that memory

access in the computer is constant and
easily accessible
•  This isn’t always true!
•  At any given time, some memory might be

cheaper and easier to access than others

HARDWARE CONSTRAINTS
•  So far, we’ve taken for granted that memory

access in the computer is constant and
easily accessible
•  This isn’t always true!
•  At any given time, some memory might be

cheaper and easier to access than others
•  Memory can’t always be accessed easily

HARDWARE CONSTRAINTS
•  So far, we’ve taken for granted that memory

access in the computer is constant and
easily accessible
•  This isn’t always true!
•  At any given time, some memory might be

cheaper and easier to access than others
•  Memory can’t always be accessed easily
•  Sometimes the OS lies, and says an object is

“in memory” when it’s actually on the disk

HARDWARE CONSTRAINTS
•  Back on 32-bit machines, each program had

access to 4GB of memory

HARDWARE CONSTRAINTS
•  Back on 32-bit machines, each program had

access to 4GB of memory
•  This isn’t feasible to provide!

HARDWARE CONSTRAINTS
•  Back on 32-bit machines, each program had

access to 4GB of memory
•  This isn’t feasible to provide!
•  Sometimes there isn’t enough available, and

so memory that hasn’t been used in a while
gets pushed to the disk

HARDWARE CONSTRAINTS
•  Back on 32-bit machines, each program had

access to 4GB of memory
•  This isn’t feasible to provide!
•  Sometimes there isn’t enough available, and

so memory that hasn’t been used in a while
gets pushed to the disk

•  Memory that is frequently accessed goes to
the cache, which is even faster than RAM

NEXT WEEK
•  No class on Monday – Happy Memorial Day!

NEXT WEEK
•  No class on Monday – Happy Memorial Day!
•  Formalize discussion of the “memory

mountain” and how this should impact your
design decisions

