CSE 373

MAY 26™ -NON-COMPARISON SORTING

ASSORTED MINUTIAE

« HW6 Out — Due next Wednesday

 No Java Libraries

ASSORTED MINUTIAE

« HW6 Out — Due next Wednesday

« No Java Libraries
 Two exam review sessions

* Wednesday: 1:00 — 2:20 — CMU 120
* Friday: 4:30 — 6:20 — EEB 105

TODAY

 Non-comparison sorts

SORTING

« “Slow” sorts

SORTING

« “Slow” sorts

* |Insertion
« Selection

SORTING

« “Slow” sorts

* |nsertion
« Selection
 “Fast” sorts

SORTING

« “Slow” sorts

* |nsertion

« Selection
« “Fast” sorts

* Quick

* Merge

* Heap

SORTING

« “Slow” sorts

* |nsertion

« Selection
« “Fast” sorts

* Quick

* Merge

* Heap

 These are all comparison sorts, can’t do
better than O(n log n)

SORTING

 Non-comparison sorts

SORTING

 Non-comparison sorts

 |If we know something about the data, we
don'’t strictly need to compare objects to each
other

SORTING

 Non-comparison sorts

 |If we know something about the data, we
don'’t strictly need to compare objects to each

other

- If there are only a few possible values and
we know what they are, we can just sort by
identifying the value

SORTING

 Non-comparison sorts

 |If we know something about the data, we
don'’t strictly need to compare objects to each

other

- If there are only a few possible values and
we know what they are, we can just sort by
identifying the value

- If the data are strings and ints of finite length,
then we can take advantage of their sorted
order.

SORTING

* Two sorting techniques we use to this end

SORTING

* Two sorting techniques we use to this end

 Bucket sort

SORTING

* Two sorting techniques we use to this end

* Bucket sort
 Radix sort

SORTING

* Two sorting techniques we use to this end

* Bucket sort
 Radix sort

 If the data is sufficiently structured, we can
get O(n) runtimes

BUCKETSORT

If all values to be sorted are known to be integers between 1
and K (or any small range):

» Create an array of size K

» Put each element in its proper bucket (a.k.a. bin)

« I/fdata is only integers, no need to store more than a count of
how times that bucket has been used

Output result via linear pass through array of buckets

count array « Example:

1 3 K=5

input (5,1,3,4,3,2,1,1,5,4,5)
output: 1,1,1,2,3,3,4,4,5,5,5

NP |WIN
WININ|I—-

ANALYZING BUCKET SORT

Overall: O(n+K)

* Linear in n, but also linear in K

Good when K is smaller (or not much larger) than n

* We don’t spend time doing comparisons of duplicates

Bad when K is much larger than n

« Wasted space; wasted time during linear O(K) pass

For data in addition to integer keys, use list at each
bucket

BUCKET SORT

Most real lists aren’t just keys; we have data

Each bucket is a list (say, linked list)

To add to a

bucket, insert in O(1) (at beginning, or keep pointer to

last element)

count array

« Example: Movie ratings; scale 1-5
Input:

1 — > RockyV 5: Casablanca

2 3: Harry Potter movies

3 —+> Harry Potter 5: Star Wars Original Trilogy
4 1: Rocky V

5 > Casablanca——> Star Wars

*Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star
Wars

*Easy to keep ‘stable’; Casablanca still before Star Wars

RADIX SORT

Radix = “the base of a number system”

- Examples will use base 10 because we are used to that

* In implementations use larger numbers
« For example, for ASCII strings, might use 128

Idea:

* Bucket sort on one digit at a time
* Number of buckets = radix
« Starting with significant digit
+ Keeping sort
* Do one pass per digit
- Invariant: After k passes (digits), the last k digits are
sorted

RADIX SORT EXAMPLE

Radix = 10
Input: 478, 537, 9, 721, 3, 38, 143, 67

3 passes (input is 3 digits at max), on each pass, stable sort the input highlighted
in yellow

478 7|2 0 0 3
5 3|7 00 0 09
009 14 ! 3 8
721 msss) 530 mmmam) 5) 067
003 06 0 4 3
038 47 1 [8
14|3 0|3 0 37
067 00 4 21

ANALYSIS

Input size: n
Number of buckets = Radix: B

Number of passes = “Digits”: P
Work per pass is 1 bucket sort: O(B+n)
Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not

« Example: Strings of English letters up to length 15
* Run-time proportional to: 15*(52 + n)
« This is less than nlog n only if n > 33,000

» Of course, cross-over point depends on constant factors of the
implementations

SORTING TAKEAWAYS

Simple O(n?) sorts can be fastest for small n

 Selection sort, Insertion sort (latter linear for mostly-sorted)
» Good for “below a cut-off” to help divide-and-conquer sorts

SORTING TAKEAWAYS

Simple O(n?) sorts can be fastest for small n

 Selection sort, Insertion sort (latter linear for mostly-sorted)
» Good for “below a cut-off” to help divide-and-conquer sorts
O(n log n) sorts

* Heap sort, in-place but not stable nor parallelizable
« Merge sort, not in place but stable and works as external sort

 Quick sort, in place but not stable and O(n?) in worst-case
» Often fastest, but depends on costs of comparisons/copies

SORTING TAKEAWAYS

Simple O(n?) sorts can be fastest for small n

 Selection sort, Insertion sort (latter linear for mostly-sorted)
» Good for “below a cut-off” to help divide-and-conquer sorts
O(n log n) sorts

* Heap sort, in-place but not stable nor parallelizable
« Merge sort, not in place but stable and works as external sort

 Quick sort, in place but not stable and O(n?) in worst-case
» Often fastest, but depends on costs of comparisons/copies

Q (n 1og n) is worst-case and average lower-bound for sorting
by comparisons

SORTING TAKEAWAYS

Simple O(n?) sorts can be fastest for small n

 Selection sort, Insertion sort (latter linear for mostly-sorted)
» Good for “below a cut-off’ to help divide-and-conquer sorts
O(n 1log n) sorts

» Heap sort, in-place but not stable nor parallelizable
* Merge sort, not in place but stable and works as external sort
* Quick sort, in place but not stable and O(n?) in worst-case
» Often fastest, but depends on costs of comparisons/copies
Q (n 1og n) is worst-case and average lower-bound for sorting by
comparisons
Non-comparison sorts

» Bucket sort good for small number of possible key values
» Radix sort uses fewer buckets and more phases
Best way to sort? It depends!

SORTING TAKEAWAYS

Simple O(n?) sorts can be fastest for small n

 Selection sort, Insertion sort (latter linear for mostly-sorted)
» Good for “below a cut-off’ to help divide-and-conquer sorts
O(n 1log n) sorts

» Heap sort, in-place but not stable nor parallelizable
* Merge sort, not in place but stable and works as external sort
* Quick sort, in place but not stable and O(n?) in worst-case
» Often fastest, but depends on costs of comparisons/copies
Q (n 1og n) is worst-case and average lower-bound for sorting by
comparisons
Non-comparison sorts

» Bucket sort good for small number of possible key values
» Radix sort uses fewer buckets and more phases
Best way to sort? It depends!

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

 Guess and Check

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

* Guess and Check (Brute Force)

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

* Guess and Check (Brute Force)
 Linear Solving

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

* Guess and Check (Brute Force)
 Linear Solving
* Divide and Conquer

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

* Guess and Check (Brute Force)
 Linear Solving
* Divide and Conquer

« Randomization and Approximation

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

* Guess and Check (Brute Force)

Linear Solving

Divide and Conquer

Randomization and Approximation

Dynamic Programming

LINEAR SOLVING

« Basic linear approach to problem solving

LINEAR SOLVING

« Basic linear approach to problem solving

* If the decider creates a set of correct
answers, find one at a time

LINEAR SOLVING

« Basic linear approach to problem solving

* If the decider creates a set of correct
answers, find one at a time

« Selection sort: find the lowest element at
each run through

« Sometimes, the best solution

 Find the smallest element of an unsorted
array

ALGORITHM DESIGN

 Which approach should be used comes
down to how difficult the problem is

ALGORITHM DESIGN

 Which approach should be used comes
down to how difficult the problem is

 How do we describe problem difficulty?

« P : Set of problems that can be solved In
polynomial time

ALGORITHM DESIGN

 Which approach should be used comes
down to how difficult the problem is

 How do we describe problem difficulty?

« P : Set of problems that can be solved In
polynomial time

* NP : Set of problems that can be verified in
polynomial time

ALGORITHM DESIGN

 Which approach should be used comes
down to how difficult the problem is

 How do we describe problem difficulty?
« P : Set of problems that can be solved In

polynomial time

* NP : Set of problems that can be verified in
polynomial time

« EXP: Set of problems that can be solved in
exponential time

ALGORITHM DESIGN

 Some problems are provably difficult

ALGORITHM DESIGN

 Some problems are provably difficult

 Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

ALGORITHM DESIGN

 Some problems are provably difficult

 Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

* At each move, the computer needs to
approximate the best move

ALGORITHM DESIGN

 Some problems are provably difficult

 Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

* At each move, the computer needs to
approximate the best move

« Certainty always comes at a price

APPROXIMATION DESIGN

 What is approximated in the chess game?

APPROXIMATION DESIGN

 What is approximated in the chess game?

* Board quality — If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

APPROXIMATION DESIGN

 What is approximated in the chess game?

* Board quality — If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

* It is very difficult, branching factor for chess
IS ~35

APPROXIMATION DESIGN

 What is approximated in the chess game?

* Board quality — If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

* It is very difficult, branching factor for chess
IS ~35
* Look as many moves into the future as time

allows to see which move yields the best
outcome

APPROXIMATION DESIGN

 Recognize what piece of information is
costly and useful for your algorithm

APPROXIMATION DESIGN

 Recognize what piece of information is
costly and useful for your algorithm

» Consider if there is a cheap way to estimate
that information

APPROXIMATION DESIGN

 Recognize what piece of information is
costly and useful for your algorithm

» Consider if there is a cheap way to estimate
that information

* Does your client have a tolerance for error?

« Can you map this problem to a similar
problem?

« “Greedy” algorithms are often approximators

RANDOMIZATION DESIGN

« Randomization is also another approach

RANDOMIZATION DESIGN

« Randomization is also another approach

« Selecting a random pivot in quicksort gives
us more certainty in the runtime

RANDOMIZATION DESIGN

« Randomization is also another approach
« Selecting a random pivot in quicksort gives
us more certainty in the runtime

* This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

RANDOMIZATION DESIGN

« Randomization is also another approach
« Selecting a random pivot in quicksort gives
us more certainty in the runtime

* This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

* Two types of randomized algorithms

* Las Vegas — correct result in random time

RANDOMIZATION DESIGN

« Randomization is also another approach
« Selecting a random pivot in quicksort gives
us more certainty in the runtime

* This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

* Two types of randomized algorithms

* Las Vegas — correct result in random time

 Montecarlo — estimated result in deterministic
time

RANDOMIZATION DESIGN

« Can we make a Montecarlo quicksort?

RANDOMIZATION DESIGN

« Can we make a Montecarlo quicksort?

* Runs O(n log n) time, but not guaranteed to
be correct

RANDOMIZATION DESIGN

« Can we make a Montecarlo quicksort?

* Runs O(n log n) time, but not guaranteed to
be correct

» Terminate a random quicksort early!

RANDOMIZATION DESIGN

« Can we make a Montecarlo quicksort?

Runs O(n log n) time, but not guaranteed to
be correct

Terminate a random quicksort early!

If you haven’t gotten the problem in some
constrained time, just return what you have.

RANDOMIZATION DESIGN

 How closeis a sort?

* If we say a list is 90% sorted, what do we
mean?

RANDOMIZATION DESIGN

 How closeis a sort?

* If we say a list is 90% sorted, what do we
mean?

* 90% of elements are smaller than the object
to the right of it?

RANDOMIZATION DESIGN

 How closeis a sort?

* If we say a list is 90% sorted, what do we
mean?

* 90% of elements are smaller than the object
to the right of it?

* The longest sorted subsequence is 90% of
the length?

RANDOMIZATION DESIGN

 How closeis a sort?

* If we say a list is 90% sorted, what do we
mean?

* 90% of elements are smaller than the object
to the right of it?

* The longest sorted subsequence is 90% of
the length?

* Analysis for these problems can be very
tricky, but it’s an important approach

ALGORITHMS

 There aren’t many easy problems left!

* Understand the tools for problem solving

ALGORITHMS

 There aren’t many easy problems left!
* Understand the tools for problem solving

* Eliminate as many non-feasible solutions as
possible

ALGORITHMS

 There aren’t many easy problems left!
* Understand the tools for problem solving

* Eliminate as many non-feasible solutions as
possible

 Understand, that some problems are too
difficult for a fast, elegant solution

ALGORITHMS

 There aren’t many easy problems left!
* Understand the tools for problem solving

* Eliminate as many non-feasible solutions as
possible

 Understand, that some problems are too
difficult for a fast, elegant solution

 Academics are great for providing ideas, but
sometimes better asymptotic runtimes don’t
become apparent until n > 1010

HARDWARE CONSTRAINTS

« So far, we’ve taken for granted that memory
access in the computer is constant and
easily accessible

HARDWARE CONSTRAINTS

« So far, we’ve taken for granted that memory
access in the computer is constant and
easily accessible

* This isn’t always true!

HARDWARE CONSTRAINTS

« So far, we’ve taken for granted that memory
access in the computer is constant and
easily accessible

* This isn’t always true!

» At any given time, some memory might be
cheaper and easier to access than others

HARDWARE CONSTRAINTS

« So far, we’ve taken for granted that memory
access in the computer is constant and
easily accessible

* This isn’t always true!

» At any given time, some memory might be
cheaper and easier to access than others

 Memory can’t always be accessed easily

HARDWARE CONSTRAINTS

« So far, we’ve taken for granted that memory
access in the computer is constant and
easily accessible

This isn’t always true!

At any given time, some memory might be
cheaper and easier to access than others

Memory can’t always be accessed easily

Sometimes the OS lies, and says an object is
“in memory” when it's actually on the disk

HARDWARE CONSTRAINTS

 Back on 32-bit machines, each program had
access to 4GB of memory

HARDWARE CONSTRAINTS

 Back on 32-bit machines, each program had
access to 4GB of memory

* This isn’t feasible to provide!

HARDWARE CONSTRAINTS

 Back on 32-bit machines, each program had
access to 4GB of memory

* This isn’t feasible to provide!

« Sometimes there isn't enough available, and
so memory that hasn’t been used in a while
gets pushed to the disk

HARDWARE CONSTRAINTS

 Back on 32-bit machines, each program had
access to 4GB of memory

* This isn’t feasible to provide!

« Sometimes there isn't enough available, and
so memory that hasn’t been used in a while
gets pushed to the disk

 Memory that is frequently accessed goes to
the cache, which is even faster than RAM

The Memory Mountain

1200 —— } R N Pentium Il Xeon

T 1550 MHz
. ' 16 KB on-chip L1 d-cache
g 1000 — 16 KB on-chip L1 i-cache
= | 512 KB off-chip unified
| |
2 800_] L2 cache
L
4 |
3
e |
£ 600_{
L.
400 - Ridges of
Temporal
Slopes of Locality
Spatial .

Locality

& working set size (bytes)
E =
o~ wn

NEXT WEEK

* No class on Monday — Happy Memorial Day!

NEXT WEEK

* No class on Monday — Happy Memorial Day!

 Formalize discussion of the “memory
mountain” and how this should impact your
design decisions

