
CSE 373 
MAY 26TH  –NON-COMPARISON SORTING 
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ASSORTED MINUTIAE 
•  HW6 Out – Due next Wednesday 

•  No Java Libraries 
•  Two exam review sessions 

•  Wednesday: 1:00 – 2:20 – CMU 120 
•  Friday: 4:30 – 6:20 – EEB 105 



TODAY 
•  Non-comparison sorts 
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SORTING 
•  “Slow” sorts 

•  Insertion 
•  Selection 

•  “Fast” sorts 
•  Quick 
•  Merge 
•  Heap 

•  These are all comparison sorts, can’t do 
better than O(n log n) 
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SORTING 
•  Non-comparison sorts 

•  If we know something about the data, we 
don’t strictly need to compare objects to each 
other 

•  If there are only a few possible values and 
we know what they are, we can just sort by 
identifying the value 

•  If the data are strings and ints of finite length, 
then we can take advantage of their sorted 
order. 
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SORTING 
•  Two sorting techniques we use to this end 

•  Bucket sort 
•  Radix sort 

•  If the data is sufficiently structured, we can 
get O(n) runtimes 



BUCKETSORT 
If all values to be sorted are known to be integers between 1 
and K (or any small range): 

•  Create an array of size K  
•  Put each element in its proper bucket (a.k.a. bin) 
•  If data is only integers, no need to store more than a count of 

how times that bucket has been used 

Output result via linear pass through array of buckets 

count array 
1 3 
2 1 
3 2 
4 2 
5 3 

•  Example:  
K=5 
input (5,1,3,4,3,2,1,1,5,4,5) 

   output: 1,1,1,2,3,3,4,4,5,5,5 



ANALYZING BUCKET SORT 
Overall: O(n+K) 

•  Linear in n, but also linear in K 
 

Good when K is smaller (or not much larger) than n 

•  We don’t spend time doing comparisons of duplicates 

Bad when K is much larger than n 
•  Wasted space; wasted time during linear O(K) pass 

 
For data in addition to integer keys, use list at each 
bucket 



BUCKET SORT 
Most real lists aren’t just keys; we have data 
Each bucket is a list (say, linked list) 
To add to a bucket, insert in O(1) (at beginning, or keep pointer to 
last element) 

count array 

1 

2 

3 

4 

5 

•  Example: Movie ratings; scale 1-5 
Input: 

 5: Casablanca 
 3: Harry Potter movies 
 5: Star Wars Original Trilogy 
 1: Rocky V 

Rocky V 

Harry Potter 

Casablanca Star Wars 

• Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star 
Wars 
• Easy to keep ‘stable’; Casablanca still before Star Wars 



RADIX SORT 
Radix = “the base of a number system” 

•  Examples will use base 10 because we are used to that 
•  In implementations use larger numbers 

•  For example, for ASCII strings, might use 128 

Idea: 

•  Bucket sort on one digit at a time 
•  Number of buckets = radix 
•  Starting with least significant digit 
•  Keeping sort stable 

•  Do one pass per digit 
•  Invariant: After k passes (digits), the last k digits are 

sorted 



RADIX SORT EXAMPLE 
Radix = 10 
 
Input:   478, 537, 9, 721, 3, 38, 143, 67 
 
3 passes (input is 3 digits at max), on each pass, stable sort the input highlighted 
in yellow 

4 7 8 
5 3 7 
0 0 9 
7 2 1 
0 0 3 
0 3 8 
1 4 3 
0 6 7 

 
 
 

7 2 1 
0 0 3 
1 4 3 
5 3 7 
0 6 7 
4 7 8 
0 3 8 
0 0 9 

 
 
 

0 0 3 
0 0 9 
7 2 1 
5 3 7 
0 3 8 
1 4 3 
0 6 7 
4 7 8 

 
 
 

0 0 3 
0 0 9 
0 3 8 
0 6 7 
1 4 3 
4 7 8 
5 3 7 
7 2 1 



ANALYSIS 
Input size: n 
Number of buckets = Radix: B 
Number of passes = “Digits”: P 
 

Work per pass is 1 bucket sort: O(B+n) 
 

Total work is O(P(B+n)) 
 

Compared to comparison sorts, sometimes a win, but often not 
•  Example: Strings of English letters up to length 15 

•  Run-time proportional to: 15*(52 + n)  
•   This is less than n log n only if n > 33,000 
•  Of course, cross-over point depends on constant factors of the 

implementations 
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ALGORITHM DESIGN 
•  Solving well known problems is great, but 

how can we use these lessons to approach 
new problems? 
•  Guess and Check (Brute Force) 
•  Linear Solving 
•  Divide and Conquer 
•  Randomization and Approximation 
•  Dynamic Programming 
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LINEAR SOLVING 
•  Basic linear approach to problem solving 
•  If the decider creates a set of correct 

answers, find one at a time 
•  Selection sort: find the lowest element at 

each run through 
•  Sometimes, the best solution 

•  Find the smallest element of an unsorted 
array 
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ALGORITHM DESIGN 
•  Which approach should be used comes 

down to how difficult the problem is 
•  How do we describe problem difficulty? 

•  P : Set of problems that can be solved in 
polynomial time 

•  NP : Set of problems that can be verified in 
polynomial time 

•  EXP: Set of problems that can be solved in 
exponential time 
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ALGORITHM DESIGN 
•  Some problems are provably difficult 

•  Humans haven’t beaten a computer in chess 
in years, but computers are still far away 
from “solving” chess 

•  At each move, the computer needs to 
approximate the best move 

•  Certainty always comes at a price 
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APPROXIMATION DESIGN 
•  What is approximated in the chess game? 

•  Board quality – If you could easily rank which 
board layout in order of quality, chess is 
simply choosing the best board 

•  It is very difficult, branching factor for chess 
is ~35 

•  Look as many moves into the future as time 
allows to see which move yields the best 
outcome 
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costly and useful for your algorithm 
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APPROXIMATION DESIGN 
•  Recognize what piece of information is 

costly and useful for your algorithm 
•  Consider if there is a cheap way to estimate 

that information 
•  Does your client have a tolerance for error? 
•  Can you map this problem to a similar 

problem? 
•  “Greedy” algorithms are often approximators 
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RANDOMIZATION DESIGN 
•  Randomization is also another approach 

•  Selecting a random pivot in quicksort gives 
us more certainty in the runtime 

•  This doesn’t impact correctness, a 
randomized quicksort still returns a sorted list 

•  Two types of randomized algorithms 
•  Las Vegas – correct result in random time 
•  Montecarlo – estimated result in deterministic 

time 
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RANDOMIZATION DESIGN 
•  Can we make a Montecarlo quicksort? 

•  Runs O(n log n) time, but not guaranteed to 
be correct 

•  Terminate a random quicksort early! 
•  If you haven’t gotten the problem in some 

constrained time, just return what you have. 
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RANDOMIZATION DESIGN 
•  How close is a sort? 
•  If we say a list is 90% sorted, what do we 

mean? 
•  90% of elements are smaller than the object 

to the right of it? 
•  The longest sorted subsequence is 90% of 

the length? 
•  Analysis for these problems can be very 

tricky, but it’s an important approach 



ALGORITHMS 
•  There aren’t many easy problems left! 
•  Understand the tools for problem solving 



ALGORITHMS 
•  There aren’t many easy problems left! 
•  Understand the tools for problem solving 
•  Eliminate as many non-feasible solutions as 

possible 



ALGORITHMS 
•  There aren’t many easy problems left! 
•  Understand the tools for problem solving 
•  Eliminate as many non-feasible solutions as 

possible 
•  Understand, that some problems are too 

difficult for a fast, elegant solution 



ALGORITHMS 
•  There aren’t many easy problems left! 
•  Understand the tools for problem solving 
•  Eliminate as many non-feasible solutions as 

possible 
•  Understand, that some problems are too 

difficult for a fast, elegant solution 
•  Academics are great for providing ideas, but 

sometimes better asymptotic runtimes don’t 
become apparent until n > 1010 
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HARDWARE CONSTRAINTS 
•  So far, we’ve taken for granted that memory 

access in the computer is constant and 
easily accessible 
•  This isn’t always true! 
•  At any given time, some memory might be 

cheaper and easier to access than others 
•  Memory can’t always be accessed easily 
•  Sometimes the OS lies, and says an object is 

“in memory” when it’s actually on the disk 
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HARDWARE CONSTRAINTS 
•  Back on 32-bit machines, each program had 

access to 4GB of memory 
•  This isn’t feasible to provide! 
•  Sometimes there isn’t enough available, and 

so memory that hasn’t been used in a while 
gets pushed to the disk 

•  Memory that is frequently accessed goes to 
the cache, which is even faster than RAM 
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NEXT WEEK 
•  No class on Monday – Happy Memorial Day! 
•  Formalize discussion of the “memory 

mountain” and how this should impact your 
design decisions  


