
CSE 373
MAY 24TH – ANALYSIS AND NON-
COMPARISON SORTING

ASSORTED MINUTIAE
•  HW6 Out – Due next Wednesday

ASSORTED MINUTIAE
•  HW6 Out – Due next Wednesday

•  Only two late days allowed

ASSORTED MINUTIAE
•  HW6 Out – Due next Wednesday

•  Only two late days allowed
•  All HW in by Friday, June 2nd

ASSORTED MINUTIAE
•  HW6 Out – Due next Wednesday

•  Only two late days allowed
•  All HW in by Friday, June 2nd

•  Regrades also in by that point.

TODAY
•  Merge sort and Quick sort examples

TODAY
•  Merge sort and Quick sort examples

•  Proving Ω(n log n) for comparison sorts

TODAY
•  Merge sort and Quick sort examples

•  Proving Ω(n log n) for comparison sorts
•  Basics of the Recurrence

TODAY
•  Merge sort and Quick sort examples

•  Proving Ω(n log n) for comparison sorts
•  Basics of the Recurrence
•  Non-comparison sorting

TODAY
•  Merge sort and Quick sort examples

•  Proving Ω(n log n) for comparison sorts
•  Basics of the Recurrence
•  Non-comparison sorting
•  JUnit

JUNIT: TESTING
FRAMEWORK

A Java library for unit testing, comes included with Eclipse
•  OR can be downloaded for free from the JUnit web site at http://junit.org
•  JUnit is distributed as a "JAR" which is a compressed archive containing

Java .class files

import org.junit.Test;!
import static org.junit.Assert.*;!
!
public class name {!
!...!

!
!@Test!
!public void name() { // a test case method!
! ...!
!}!

}!

 A method with @Test is flagged as a JUnit test case and run

JUNIT ASSERTS AND
EXCEPTIONS
A	 test	 will	 pass	 if	 the	 assert	 statements	 all	 pass	 and	 if	 no	 excep4on	 thrown.	 	
Examples	 of	 assert	 statements:	

•  assertTrue(value)!
•  assertFalse(value)!
•  assertEquals(expected, actual)!
•  assertNull(value)!
•  assertNotNull(value)!
•  fail()!
!

Tests	 can	 expect	 excep4ons	 or	 4meouts	
@Test(expected = ExceptionType.class)!
public void name() {!
!...!

}!

MERGE EXAMPLE

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

First half after sort: Second half after sort:

Result:

MERGE EXAMPLE

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1

First half after sort: Second half after sort:

Result:

MERGE EXAMPLE

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2

First half after sort: Second half after sort:

Result:

MERGE EXAMPLE

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3

First half after sort: Second half after sort:

Result:

MERGE EXAMPLE

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4

First half after sort: Second half after sort:

Result:

MERGE EXAMPLE

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4 5

First half after sort: Second half after sort:

Result:

MERGE EXAMPLE

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4 5 6

First half after sort: Second half after sort:

Result:

MERGE EXAMPLE

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4 5 6 7

First half after sort: Second half after sort:

Result:

MERGE EXAMPLE

2 4 7 8 1 3 5 6

Merge operation: Use 3 pointers and 1 more array

1 2 3 4 5 6 7 8

First half after sort: Second half after sort:

Result:

After Merge: copy result into original unsorted array.
Or alternate merging between two size n arrays.

QUICK SORT EXAMPLE: DIVIDE

7 3 8 4 5 2 1 6

Pivot rule: pick the element at index 0

7 3 8 4 5 2 1

3 4 5 2 1

6

6

2 1 4 5 6

5 6

QUICK SORT EXAMPLE: COMBINE

7 3 8 4 5 2 1 6

Combine: this is the order of the elements we’ll care about when
combining

7 3 8 4 5 2 1

3 4 5 2 1

6

6

2 1 4 5 6

5 6

QUICK SORT EXAMPLE: COMBINE

1 2 3 4 5 6 7 8

Combine: put left partition < pivot < right partition

7 1 8 2 3 4 5

3 4 5 1 2

6

6

2 1 4 5 6

5 6

MEDIAN PIVOT EXAMPLE

25

2 8 4 5 3 1 6

Pick the median of first, middle, and last

7 Median = 6

Swap the median with the first value

2 8 4 5 3 1 6 7

2 8 4 5 3 1 7 6

Pivot is now at index 0, and we’re ready to go

PARTITIONING
Conceptually simple, but hardest part to code up correctly

•  After picking pivot, need to partition in linear time in place

One approach (there are slightly fancier ones):
1.  Put pivot in index lo
2.  Use two pointers i and j, starting at lo+1 and hi-1
3.   while (i < j)

 if (arr[j] > pivot) j--
 else if (arr[i] < pivot) i++
 else swap arr[i] with arr[j]

4.  Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

26 C
SE

37
3

: D
at

a
St

ru
ct

u
re

s
&

A

lg
or

it
hm

s

EXAMPLE
Step one: pick pivot as median of 3

•  lo = 0, hi = 10

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

•  Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

QUICK SORT PARTITION EXAMPLE
6 1 4 9 0 3 5 7 2 8

6 1 4 2 0 3 5 7 9 8

5 1 4 2 0 3 6 7 9 8

6 1 4 9 0 3 5 7 2 8

6 1 4 9 0 3 5 7 2 8

6 1 4 9 0 3 5 7 2 8

6 1 4 2 0 3 5 7 9 8

ASYMPTOTIC RUNTIME
OF RECURSION

Recurrence Definition:

ASYMPTOTIC RUNTIME
OF RECURSION

Recurrence Definition:
A recurrence is a recursive definition of a function in terms of
smaller values.

Example: Fibonacci numbers.

ASYMPTOTIC RUNTIME
OF RECURSION

Recurrence Definition:
A recurrence is a recursive definition of a function in terms of
smaller values.

Example: Fibonacci numbers.

To analyze the runtime of recursive code, we use a recurrence
by splitting the work into two pieces:

•  Non-Recursive Work
•  Recursive Work

RECURSIVE VERSION OF SUM:

What’s the recurrence T(n)?
•  Non-Recursive Work:
•  Recursive Work:

int sum(int[] arr){
 return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
 if(lo==hi) return 0;
 if(lo==hi-1) return arr[lo];
 int mid = (hi+lo)/2;
 return help(arr,lo,mid) + help(arr,mid,hi);
}

RECURSIVE VERSION OF SUM:

What’s the recurrence T(n)?
•  Non-Recursive Work: O(1)
•  Recursive Work: T(n/2) * 2 halves

T(n) = O(1) + 2*T(n/2)

int sum(int[] arr){
 return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
 if(lo==hi) return 0;
 if(lo==hi-1) return arr[lo];
 int mid = (hi+lo)/2;
 return help(arr,lo,mid) + help(arr,mid,hi);
}

SOLVING THAT
RECURRENCE RELATION

1.  Determine the recurrence relation. What is the base case?
•  If T(1) = 1, then T(n) = 1 + 2*T(n/2)

2.  “Expand” the original relation to find an equivalent general expression
in terms of the number of expansions.

•  T(n) = 1 + 2 * T(n / 2)
 = 1 + 2 + 2 * T(n / 4)
 = 1 + 2 + 4 + ... for log(n) times
 = …

 = 2(log n) – 1

3.  Find a closed-form expression by setting the number of expansions to
a value which reduces the problem to a base case

•  So T(n) is O(n)

Explanation: it adds each number once while doing little else

SOLVING RECURRENCE RELATIONS
EXAMPLE 2

1.  Determine the recurrence relation. What is the base case?
•  If T(n) = 10 + T(n/2) and T(1) = 10

2.  “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

•  T(n) = 10 + 10 + T(n/4)
 = 10 + 10 + 10 + T(n/8)

 = …
 = 10k + T(n/(2k))

3.  Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base
case

•  n/(2k) = 1 means n = 2k means k = log2 n
•  So T(n) = 10 log2 n + 8 (get to base case and do it)
•  So T(n) is O(log n)

REALLY COMMON
RECURRENCES
You can recognize some really common recurrences:

 T(n) = O(1) + T(n-1) linear
 T(n) = O(1) + 2T(n/2) linear
 T(n) = O(1) + T(n/2) logarithmic O(log n)
 T(n) = O(1) + 2T(n-1) exponential
 T(n) = O(n) + T(n-1) quadratic
 T(n) = O(n) + T(n/2) linear
 T(n) = O(n) + 2T(n/2) O(n log n) (divide

and conquer sort)

Note big-Oh can also use more than one variable
Example: can sum all elements of an n-by-m matrix in O(nm)

QUICK SORT ANALYSIS
Best-case: Pivot is always the median

 T(0)=T(1)=1
 T(n)=2T(n/2) + n -- linear-time partition
 Same recurrence as mergesort: O(n log n)

Worst-case: Pivot is always smallest or largest element

 T(0)=T(1)=1
 T(n) = 1T(n-1) + n

 Basically same recurrence as selection sort: O(n2)

Average-case (e.g., with random pivot)

•  O(n log n), not responsible for proof

HOW FAST CAN WE
SORT?

Heapsort & mergesort have O(n log n) worst-case running time

Quicksort has O(n log n) average-case running time

•  Assuming our comparison model: The only operation an algorithm can

perform on data items is a 2-element comparison. There is no lower
asymptotic complexity, such as O(n) or O(n log log n)

COUNTING
COMPARISONS
No matter what the algorithm is, it cannot make progress
without doing comparisons

•  Intuition: Each comparison can at best eliminate half the

remaining possibilities of possible orderings

Can represent this process as a decision tree

•  Nodes contain “set of remaining possibilities”
•  Edges are “answers from a comparison”
•  The algorithm does not actually build the tree; it’s what our

proof uses to represent “the most the algorithm could know so
far” as the algorithm progresses

COUNTING
COMPARISONS
No matter what the algorithm is, it cannot make progress
without doing comparisons

COUNTING
COMPARISONS
No matter what the algorithm is, it cannot make progress
without doing comparisons

•  Intuition: Each comparison can at best eliminate half the

remaining possibilities of possible orderings

COUNTING
COMPARISONS
No matter what the algorithm is, it cannot make progress
without doing comparisons

•  Intuition: Each comparison can at best eliminate half the

remaining possibilities of possible orderings

Can represent this process as a decision tree

COUNTING
COMPARISONS
No matter what the algorithm is, it cannot make progress
without doing comparisons

•  Intuition: Each comparison can at best eliminate half the

remaining possibilities of possible orderings

Can represent this process as a decision tree

•  Nodes contain “set of remaining possibilities”
•  Edges are “answers from a comparison”
•  The algorithm does not actually build the tree; it’s what our

proof uses to represent “the most the algorithm could know so
far” as the algorithm progresses

DECISION TREE FOR N
= 3

a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

 b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

•  The leaves contain all the possible orderings of a, b, c

EXAMPLE IF A < C < B
a < b < c, b < c < a,
a < c < b, c < a < b,
b < a < c, c < b < a

a < b < c
a < c < b
c < a < b

b < a < c
b < c < a
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

 b < a < c
b < c < a

c < b < a

b < c < a b < a < c

a < b a > b

a > c a < c

b < c b > c

b < c b > c

c < a c > a

possible orders

actual order

DECISION TREE
A binary tree because each comparison has 2
outcomes (we’re comparing 2 elements at a time)
Because any data is possible, any algorithm needs
to ask enough questions to produce all orderings.

The facts we can get from that:

1.  Each ordering is a different leaf (only one is correct)
2.  Running any algorithm on any input will at best correspond to a root-to-

leaf path in some decision tree. Worst number of comparisons is the
longest path from root-to-leaf in the decision tree for input size n

3.  There is no worst-case running time better than the height of a tree with
<num possible orderings> leaves

POSSIBLE ORDERINGS
Assume we have n elements to sort. How many permutations of the elements (possible
orderings)?

•  For simplicity, assume none are equal (no duplicates)

Example, n=3

 a[0]<a[1]<a[2] a[0]<a[2]<a[1]
 a[1]<a[0]<a[2]

 a[1]<a[2]<a[0] a[2]<a[0]<a[1]
 a[2]<a[1]<a[0]

In general, n choices for least element, n-1 for next, n-2 for next, …

•  n(n-1)(n-2)…(2)(1) = n! possible orderings

That means with n! possible leaves, best height for tree is log(n!), given that best case tree
splits leaves in half at each branch

RUNTIME

48

That proves runtime is at least Ω(log (n!)). Can we write that more clearly?

Nice! Any sorting algorithm must do at best (1/2)*(nlog n – n) comparisons:
Ω(nlog n)

SORTING
•  This is the lower bound for comparison sorts

SORTING
•  This is the lower bound for comparison sorts
•  How can non-comparison sorts work better?

SORTING
•  This is the lower bound for comparison sorts
•  How can non-comparison sorts work better?

•  They need to know something about the data

SORTING
•  This is the lower bound for comparison sorts
•  How can non-comparison sorts work better?

•  They need to know something about the data
•  Strings and Ints are very well ordered

SORTING
•  This is the lower bound for comparison sorts
•  How can non-comparison sorts work better?

•  They need to know something about the data
•  Strings and Ints are very well ordered

•  If I told you to put “Apple” into a list of words,
where would you put it?

BUCKETSORT
If all values to be sorted are known to be integers between 1
and K (or any small range):

•  Create an array of size K
•  Put each element in its proper bucket (a.k.a. bin)
•  If data is only integers, no need to store more than a count of

how times that bucket has been used

Output result via linear pass through array of buckets

count array
1 3
2 1
3 2
4 2
5 3

•  Example:
K=5
input (5,1,3,4,3,2,1,1,5,4,5)

 output: 1,1,1,2,3,3,4,4,5,5,5

ANALYZING BUCKET SORT
Overall: O(n+K)

•  Linear in n, but also linear in K

Good when K is smaller (or not much larger) than n

•  We don’t spend time doing comparisons of duplicates

Bad when K is much larger than n
•  Wasted space; wasted time during linear O(K) pass

For data in addition to integer keys, use list at each
bucket

BUCKET SORT
Most real lists aren’t just keys; we have data
Each bucket is a list (say, linked list)
To add to a bucket, insert in O(1) (at beginning, or keep pointer to
last element)

count array

1

2

3

4

5

•  Example: Movie ratings; scale 1-5
Input:

 5: Casablanca
 3: Harry Potter movies
 5: Star Wars Original Trilogy
 1: Rocky V

Rocky V

Harry Potter

Casablanca Star Wars

• Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star
Wars
• Easy to keep ‘stable’; Casablanca still before Star Wars

RADIX SORT
Radix = “the base of a number system”

•  Examples will use base 10 because we are used to that
•  In implementations use larger numbers

•  For example, for ASCII strings, might use 128

Idea:

•  Bucket sort on one digit at a time
•  Number of buckets = radix
•  Starting with least significant digit
•  Keeping sort stable

•  Do one pass per digit
•  Invariant: After k passes (digits), the last k digits are

sorted

RADIX SORT EXAMPLE
Radix = 10

Input: 478, 537, 9, 721, 3, 38, 143, 67

3 passes (input is 3 digits at max), on each pass, stable sort the input highlighted
in yellow

4 7 8
5 3 7
0 0 9
7 2 1
0 0 3
0 3 8
1 4 3
0 6 7

7 2 1
0 0 3
1 4 3
5 3 7
0 6 7
4 7 8
0 3 8
0 0 9

0 0 3
0 0 9
7 2 1
5 3 7
0 3 8
1 4 3
0 6 7
4 7 8

0 0 3
0 0 9
0 3 8
0 6 7
1 4 3
4 7 8
5 3 7
7 2 1

ANALYSIS
Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P

Work per pass is 1 bucket sort: O(B+n)

Total work is O(P(B+n))

Compared to comparison sorts, sometimes a win, but often not
•  Example: Strings of English letters up to length 15

•  Run-time proportional to: 15*(52 + n)
•  This is less than n log n only if n > 33,000
•  Of course, cross-over point depends on constant factors of the

implementations

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

O(n log n) sorts

•  Heap sort, in-place but not stable nor parallelizable
•  Merge sort, not in place but stable and works as external sort
•  Quick sort, in place but not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

O(n log n) sorts

•  Heap sort, in-place but not stable nor parallelizable
•  Merge sort, not in place but stable and works as external sort
•  Quick sort, in place but not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies
Ω (n log n) is worst-case and average lower-bound for sorting
by comparisons

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

O(n log n) sorts
•  Heap sort, in-place but not stable nor parallelizable
•  Merge sort, not in place but stable and works as external sort
•  Quick sort, in place but not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies
Ω (n log n) is worst-case and average lower-bound for sorting by
comparisons
Non-comparison sorts

•  Bucket sort good for small number of possible key values
•  Radix sort uses fewer buckets and more phases

Best way to sort? It depends!

SORTING TAKEAWAYS
Simple O(n2) sorts can be fastest for small n

•  Selection sort, Insertion sort (latter linear for mostly-sorted)
•  Good for “below a cut-off” to help divide-and-conquer sorts

O(n log n) sorts
•  Heap sort, in-place but not stable nor parallelizable
•  Merge sort, not in place but stable and works as external sort
•  Quick sort, in place but not stable and O(n2) in worst-case

•  Often fastest, but depends on costs of comparisons/copies
Ω (n log n) is worst-case and average lower-bound for sorting by
comparisons
Non-comparison sorts

•  Bucket sort good for small number of possible key values
•  Radix sort uses fewer buckets and more phases

Best way to sort? It depends!

