
CSE 373 
MAY 24TH  – ANALYSIS AND NON-
COMPARISON SORTING 
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•  HW6 Out – Due next Wednesday 

•  Only two late days allowed 
•  All HW in by Friday, June 2nd 

•  Regrades also in by that point. 
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TODAY 
•  Merge sort and Quick sort examples 

•  Proving Ω(n log n) for comparison sorts 
•  Basics of the Recurrence 
•  Non-comparison sorting 
•  JUnit 



JUNIT: TESTING 
FRAMEWORK 

A Java library for unit testing, comes included with Eclipse 
•  OR can be downloaded for free from the JUnit web site at http://junit.org 
•  JUnit is distributed as a "JAR" which is a compressed archive containing 

Java .class files 
 
import org.junit.Test;!
import static org.junit.Assert.*;!
!
public class name {!
!...!

!
!@Test!
!public void name() { // a test case method!
!  ...!
!}!

}!
 

 A method with @Test is flagged as a JUnit test case and run 



JUNIT ASSERTS AND 
EXCEPTIONS 
A	  test	  will	  pass	  if	  the	  assert	  statements	  all	  pass	  and	  if	  no	  excep4on	  thrown.	  	  
Examples	  of	  assert	  statements:	  

•  assertTrue(value)!
•  assertFalse(value)!
•  assertEquals(expected, actual)!
•  assertNull(value)!
•  assertNotNull(value)!
•  fail()!
!

Tests	  can	  expect	  excep4ons	  or	  4meouts	  
@Test(expected = ExceptionType.class)!
public void name() {!
!...!

}!
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MERGE EXAMPLE 

2 4 7 8 1 3 5 6 

Merge operation: Use 3 pointers and 1 more array 

1 2 3 4 5 6 7 8 

First half after sort: Second half after sort: 

Result: 

After Merge: copy result into original unsorted array.   
Or alternate merging between two size n arrays. 



QUICK SORT EXAMPLE: DIVIDE 

7 3 8 4 5 2 1 6 

Pivot rule: pick the element at index 0 

7 3 8 4 5 2 1 

3 4 5 2 1 

6 

6 

2 1 4 5 6 

5 6 



QUICK SORT EXAMPLE: COMBINE 

7 3 8 4 5 2 1 6 

Combine: this is the order of the elements we’ll care about when 
combining 

7 3 8 4 5 2 1 

3 4 5 2 1 

6 

6 

2 1 4 5 6 

5 6 



QUICK SORT EXAMPLE: COMBINE 

1 2 3 4 5 6 7 8 

Combine: put left partition < pivot < right partition 

7 1 8 2 3 4 5 

3 4 5 1 2 

6 

6 

2 1 4 5 6 

5 6 



MEDIAN PIVOT EXAMPLE 

25 

2 8 4 5 3 1 6 

Pick the median of first, middle, and last 

7 Median = 6 

Swap the median with the first value 

2 8 4 5 3 1 6 7 

2 8 4 5 3 1 7 6 

Pivot is now at index 0, and we’re ready to go 



PARTITIONING 
Conceptually simple, but hardest part to code up correctly 

•  After picking pivot, need to partition in linear time in place 

One approach (there are slightly fancier ones): 
1.  Put pivot in index lo 
2.  Use two pointers i and j, starting at lo+1 and hi-1 
3.   while (i < j) 

   if (arr[j] > pivot) j-- 
   else if (arr[i] < pivot) i++ 
   else swap arr[i] with arr[j] 

4.  Swap pivot with arr[i] * 

*skip step 4 if pivot ends up being least element 
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EXAMPLE 
Step one: pick pivot as median of 3 

•  lo = 0, hi = 10 

 

6 1 4 9 0 3 5 2 7 8 
0 1 2 3 4 5 6 7 8 9 

•  Step two: move pivot to the lo position 

8 1 4 9 0 3 5 2 7 6 
0 1 2 3 4 5 6 7 8 9 



QUICK SORT PARTITION EXAMPLE 
6 1 4 9 0 3 5 7 2 8 

6 1 4 2 0 3 5 7 9 8 

5 1 4 2 0 3 6 7 9 8 

6 1 4 9 0 3 5 7 2 8 

6 1 4 9 0 3 5 7 2 8 

6 1 4 9 0 3 5 7 2 8 

6 1 4 2 0 3 5 7 9 8 
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ASYMPTOTIC RUNTIME 
OF RECURSION 

Recurrence Definition: 
A recurrence is a recursive definition of a function in terms of 
smaller values. 

Example: Fibonacci numbers.  
 

To analyze the runtime of recursive code, we use a recurrence 
by splitting the work into two pieces: 

•  Non-Recursive Work 
•  Recursive Work 



RECURSIVE VERSION OF SUM: 

What’s the recurrence T(n)? 
•  Non-Recursive Work:  
•  Recursive Work: 

int sum(int[] arr){ 
   return help(arr,0,arr.length); 
} 
int help(int[] arr, int lo, int hi) { 
   if(lo==hi)   return 0; 
   if(lo==hi-1) return arr[lo];    
   int mid = (hi+lo)/2; 
   return help(arr,lo,mid) + help(arr,mid,hi); 
} 
    



RECURSIVE VERSION OF SUM: 

What’s the recurrence T(n)? 
•  Non-Recursive Work: O(1) 
•  Recursive Work: T(n/2) * 2 halves 

T(n) = O(1) + 2*T(n/2) 

int sum(int[] arr){ 
   return help(arr,0,arr.length); 
} 
int help(int[] arr, int lo, int hi) { 
   if(lo==hi)   return 0; 
   if(lo==hi-1) return arr[lo];    
   int mid = (hi+lo)/2; 
   return help(arr,lo,mid) + help(arr,mid,hi); 
} 
    



SOLVING THAT 
RECURRENCE RELATION 

1.  Determine the recurrence relation.  What is the base case? 
•  If T(1) = 1, then T(n) = 1 + 2*T(n/2)   

2.  “Expand” the original relation to find an equivalent general expression 
in terms of the number of expansions. 

•  T(n)  = 1 + 2 * T(n / 2) 
          = 1 + 2 + 2 * T(n / 4) 
          = 1 + 2 + 4 + ...  for log(n) times 
   = … 

                  = 2(log n) – 1  
 

3.  Find a closed-form expression by setting the number of expansions to 
a value which reduces the problem to a base case 

•  So T(n) is O(n) 
 

Explanation: it adds each number once while doing little else 
 



SOLVING RECURRENCE RELATIONS 
EXAMPLE 2 

1.  Determine the recurrence relation.  What is the base case? 
•  If  T(n) = 10 + T(n/2) and T(1) = 10   

2.  “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions. 

•  T(n)  = 10 + 10 + T(n/4) 
          = 10 + 10 + 10 + T(n/8) 

                 = … 
                 = 10k + T(n/(2k)) 
 

3.  Find a closed-form expression by setting the number of 
expansions to a value which reduces the problem to a base 
case 

•  n/(2k) = 1 means n = 2k  means k = log2 n 
•  So T(n) = 10 log2 n + 8  (get to base case and do it) 
•  So T(n) is O(log n) 

 



REALLY COMMON 
RECURRENCES 
You can recognize some really common recurrences: 
 

 T(n) = O(1) + T(n-1)    linear 
 T(n) = O(1) + 2T(n/2)    linear  
 T(n) = O(1) + T(n/2)    logarithmic O(log n) 
 T(n) = O(1) + 2T(n-1)    exponential  
 T(n) = O(n) + T(n-1)    quadratic 
 T(n) = O(n) + T(n/2)    linear 
 T(n) = O(n) + 2T(n/2)    O(n log n) (divide 

and conquer sort) 
 

 
Note big-Oh can also use more than one variable 
Example: can sum all elements of an n-by-m matrix in O(nm) 



QUICK SORT ANALYSIS 
Best-case: Pivot is always the median 

  T(0)=T(1)=1 
  T(n)=2T(n/2) + n           -- linear-time partition 
  Same recurrence as mergesort: O(n log n) 

 
Worst-case: Pivot is always smallest or largest element 

  T(0)=T(1)=1 
              T(n) = 1T(n-1)  + n    

  Basically same recurrence as selection sort: O(n2) 
 
Average-case (e.g., with random pivot) 

•  O(n log n), not responsible for proof 
 



HOW FAST CAN WE 
SORT? 

Heapsort & mergesort have O(n log n) worst-case running time 
 
Quicksort has O(n log n) average-case running time 

 
•  Assuming our comparison model: The only operation an algorithm can 

perform on data items is a 2-element comparison.  There is no lower 
asymptotic complexity, such as O(n) or O(n  log log n) 



COUNTING 
COMPARISONS 
No matter what the algorithm is, it cannot make progress 
without doing comparisons 
 
•  Intuition: Each comparison can at best eliminate half  the 

remaining possibilities of possible orderings 
 
Can represent this process as a decision tree 

•  Nodes contain “set of remaining possibilities” 
•  Edges are “answers from a comparison” 
•  The algorithm does not actually build the tree; it’s what our 

proof uses to represent “the most the algorithm could know so 
far” as the algorithm progresses 
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COUNTING 
COMPARISONS 
No matter what the algorithm is, it cannot make progress 
without doing comparisons 
 
•  Intuition: Each comparison can at best eliminate half  the 

remaining possibilities of possible orderings 
 
Can represent this process as a decision tree 

•  Nodes contain “set of remaining possibilities” 
•  Edges are “answers from a comparison” 
•  The algorithm does not actually build the tree; it’s what our 

proof uses to represent “the most the algorithm could know so 
far” as the algorithm progresses 



DECISION TREE FOR N 
= 3 

a < b < c, b < c < a, 
a < c < b, c < a < b, 
b < a < c, c < b < a  

a < b < c 
a < c < b 
c < a < b 

b < a < c  
b < c < a 
c < b < a 

a < b < c 
a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  
b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

•  The leaves contain all the possible orderings of a, b, c 



EXAMPLE IF A < C < B 
a < b < c, b < c < a, 
a < c < b, c < a < b, 
b < a < c, c < b < a  

a < b < c 
a < c < b 
c < a < b 

b < a < c  
b < c < a 
c < b < a 

a < b < c 
a < c < b 

c < a < b 

a < b < c a < c < b 

 b < a < c  
b < c < a 

c < b < a 

b < c < a  b < a < c  

a < b a > b 

a > c a < c 

b < c b > c 

b < c b > c  

c < a c > a 

possible orders 

actual order 



DECISION TREE 
A binary tree because each comparison has 2 
outcomes  (we’re comparing 2 elements at a time) 
Because any data is possible, any algorithm needs 
to ask enough questions to produce all orderings. 
 
The facts we can get from that: 

1.  Each ordering is a different leaf (only one is correct) 
2.  Running any algorithm on any input will at best correspond to a root-to-

leaf path in some decision tree.  Worst number of comparisons is the 
longest path from root-to-leaf in the decision tree for input size n 

3.  There is no worst-case running time better than the height of a tree with 
<num possible orderings> leaves 



POSSIBLE ORDERINGS 
Assume we have n elements to sort. How many permutations of the elements (possible 
orderings)? 

•  For simplicity, assume none are equal (no duplicates) 

Example, n=3 

  a[0]<a[1]<a[2]   a[0]<a[2]<a[1] 
  a[1]<a[0]<a[2] 

         a[1]<a[2]<a[0]   a[2]<a[0]<a[1] 
  a[2]<a[1]<a[0] 

 
 
In general, n choices for least element, n-1 for next, n-2 for next, … 

•  n(n-1)(n-2)…(2)(1) = n!  possible orderings 
 

That means with n! possible leaves, best height for tree is log(n!), given that best case tree 
splits leaves in half at each branch 

 
 

 



RUNTIME 

48 

That proves runtime is at least Ω(log (n!)).  Can we write that more clearly? 

Nice! Any sorting algorithm must do at best (1/2)*(nlog n – n) comparisons: 
Ω(nlog n) 
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SORTING 
•  This is the lower bound for comparison sorts 
•  How can non-comparison sorts work better? 

•  They need to know something about the data 
•  Strings and Ints are very well ordered 

•  If I told you to put “Apple” into a list of words, 
where would you put it? 



BUCKETSORT 
If all values to be sorted are known to be integers between 1 
and K (or any small range): 

•  Create an array of size K  
•  Put each element in its proper bucket (a.k.a. bin) 
•  If data is only integers, no need to store more than a count of 

how times that bucket has been used 

Output result via linear pass through array of buckets 

count array 
1 3 
2 1 
3 2 
4 2 
5 3 

•  Example:  
K=5 
input (5,1,3,4,3,2,1,1,5,4,5) 

   output: 1,1,1,2,3,3,4,4,5,5,5 



ANALYZING BUCKET SORT 
Overall: O(n+K) 

•  Linear in n, but also linear in K 
 

Good when K is smaller (or not much larger) than n 

•  We don’t spend time doing comparisons of duplicates 

Bad when K is much larger than n 
•  Wasted space; wasted time during linear O(K) pass 

 
For data in addition to integer keys, use list at each 
bucket 



BUCKET SORT 
Most real lists aren’t just keys; we have data 
Each bucket is a list (say, linked list) 
To add to a bucket, insert in O(1) (at beginning, or keep pointer to 
last element) 

count array 

1 

2 

3 

4 

5 

•  Example: Movie ratings; scale 1-5 
Input: 

 5: Casablanca 
 3: Harry Potter movies 
 5: Star Wars Original Trilogy 
 1: Rocky V 

Rocky V 

Harry Potter 

Casablanca Star Wars 

• Result: 1: Rocky V, 3: Harry Potter, 5: Casablanca, 5: Star 
Wars 
• Easy to keep ‘stable’; Casablanca still before Star Wars 



RADIX SORT 
Radix = “the base of a number system” 

•  Examples will use base 10 because we are used to that 
•  In implementations use larger numbers 

•  For example, for ASCII strings, might use 128 

Idea: 

•  Bucket sort on one digit at a time 
•  Number of buckets = radix 
•  Starting with least significant digit 
•  Keeping sort stable 

•  Do one pass per digit 
•  Invariant: After k passes (digits), the last k digits are 

sorted 



RADIX SORT EXAMPLE 
Radix = 10 
 
Input:   478, 537, 9, 721, 3, 38, 143, 67 
 
3 passes (input is 3 digits at max), on each pass, stable sort the input highlighted 
in yellow 

4 7 8 
5 3 7 
0 0 9 
7 2 1 
0 0 3 
0 3 8 
1 4 3 
0 6 7 

 
 
 

7 2 1 
0 0 3 
1 4 3 
5 3 7 
0 6 7 
4 7 8 
0 3 8 
0 0 9 

 
 
 

0 0 3 
0 0 9 
7 2 1 
5 3 7 
0 3 8 
1 4 3 
0 6 7 
4 7 8 

 
 
 

0 0 3 
0 0 9 
0 3 8 
0 6 7 
1 4 3 
4 7 8 
5 3 7 
7 2 1 



ANALYSIS 
Input size: n 
Number of buckets = Radix: B 
Number of passes = “Digits”: P 
 

Work per pass is 1 bucket sort: O(B+n) 
 

Total work is O(P(B+n)) 
 

Compared to comparison sorts, sometimes a win, but often not 
•  Example: Strings of English letters up to length 15 

•  Run-time proportional to: 15*(52 + n)  
•   This is less than n log n only if n > 33,000 
•  Of course, cross-over point depends on constant factors of the 

implementations 
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