
CSE 373 
MAY 22ND  – EVEN MORE SORTING 
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ASSORTED MINUTIAE 
•  HW6 out tonight – Due next Tuesday at 

midnight 
•  Extra assignment – Due next Friday, last day 

of class 
•  No late days for this one 
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REVIEW 
•  Slow sorts 

•  O(n2) 
•  Insertion 
•  Selection 

•  Fast sorts  
•  O(n log n) 
•  Heap sort 



IN-PLACE HEAP SORT 
•  Treat the initial array as a heap (via buildHeap) 
•  When you delete the ith  element, put it at arr[n-i] 

•  That array location isn’t needed for the heap anymore! 

4 7 5 9 8 6 10 3 2 1 

sorted part heap part 

arr[n-i]= 
deleteMin() 

5 7 6 9 8 10 4 3 2 1 

sorted part heap part 

put the min at the end of the heap 
data 



SORTING: THE BIG 
PICTURE 
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DIVIDE AND CONQUER 
Divide-and-conquer is a useful technique for solving many kinds of 
problems (not just sorting). It consists of the following steps: 

1. Divide your work up into smaller pieces (recursively) 
2. Conquer the individual pieces (as base cases) 
3. Combine the results together (recursively) 

algorithm(input) {!
!if (small enough) {!
! !CONQUER, solve, and return input!
!} else {!
! !DIVIDE input into multiple pieces!
! !RECURSE on each piece!
! !COMBINE and return results!
!}!

}!



DIVIDE-AND-CONQUER 
SORTING 

Two great sorting methods are fundamentally divide-and-conquer 
 
Mergesort:      

Sort the left half of the elements (recursively) 
Sort the right half of the elements (recursively) 
Merge the two sorted halves into a sorted whole 

 
Quicksort:     

Pick a “pivot” element  
Divide elements into less-than pivot and greater-than pivot 
Sort the two divisions (recursively on each) 
Answer is: sorted-less-than....pivot....sorted-greater-than 

     
 



MERGE SORT 

Unsorted 

Unsorted Unsorted 

Divide: Split array roughly into half 

Sorted 

Sorted Sorted 

Conquer: Return array when length ≤ 1 

Combine: Combine two sorted arrays using merge 



MERGE SORT: 
PSEUDOCODE 
Core idea: split array in half, sort each half, merge back 
together. If the array has size 0 or 1, just return it unchanged 

mergesort(input) {!
!if (input.length < 2) {!
! !return input;!
!} else {!
! !smallerHalf = sort(input[0, ..., mid]);!
! !largerHalf = sort(input[mid + 1, ...]);!
! !return merge(smallerHalf, largerHalf);!
!}!

}!
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MERGE SORT 
EXAMPLE 
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4 8 

8 4 

1 3 5 6 

3 5 1 6 

5 3 1 6 



MERGE SORT 
ANALYSIS 

Runtime: 
•  subdivide the array in half each time: O(log(n)) recursive calls 
•  merge is an O(n) traversal at each level  

So, the best and worst case runtime is the same: O(n log(n)) 

O(log(n)) 
levels 



MERGE SORT 
ANALYSIS 

Stable? 
Yes!  If we implement the merge function correctly, merge sort 
will be stable. 

In-place? 
No.  Unless you want to give yourself a headache.  Merge must 
construct a new array to contain the output, so merge sort is not 
in-place. 

 
We’re constantly copying and creating new arrays at each 
level... 
 
One Solution: (less of a headache than actually implementing 
in-place) create a single auxiliary array and swap between 
it and the original on each level. 



QUICK SORT 
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Divide: Split array around a ‘pivot’ 
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QUICK SORT 

Unsorted 

<= P > P  

Divide: Pick a pivot, partition into 
groups 

Sorted 

<= P > P 

Conquer: Return array when length 
≤ 1 

Combine: Combine sorted partitions and pivot 

P 

P 



QUICK SORT 
PSEUDOCODE 
Core idea: Pick some item from the array and call it the pivot. Put all 
items smaller in the pivot into one group and all items larger in the 
other and recursively sort. If the array has size 0 or 1, just return it 
unchanged. 

quicksort(input) {!
!if (input.length < 2) {!
! !return input;!
!} else {!
! !pivot = getPivot(input);!
! !smallerHalf = sort(getSmaller(pivot, input));!
! !largerHalf = sort(getBigger(pivot, input));!
! !return smallerHalf + pivot + largerHalf;!
!}!

}!



QUICKSORT 

13 
81 

92 
43 

65 

31 57 

26 

75 
0 

S select pivot value 

13 81 92 
43 65 

31 

57 26 

75 0 
S1 S2 partition S 

13 43 31 57 26 0 

S1 
81 92 75 65 

S2 
Quicksort(S1) and 

Quicksort(S2) 

13 43 31 57 26 0 65 81 92 75 S Presto!  S is sorted 

[Weiss] 



QUICKSORT 
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DETAILS 
Have not yet explained: 
 
How to pick the pivot element 

•  Any choice is correct: data will end up sorted 
•  But as analysis will show, want the two partitions to be about 

equal in size 
 

How to implement partitioning 
•  In linear time 
•  In place 



PIVOTS 
Best pivot? 

•  Median 
•  Halve each time 

 

 

 

Worst pivot? 
•  Greatest/least element 
•  Problem of size n - 1 
•  O(n2) 

2  4   3   1 8   9   6 

8 2 9 4 5 3 1 6 

5 

8  2  9  4  5  3  6 

8 2 9 4 5 3 1 6 

1 



POTENTIAL PIVOT 
RULES 
While sorting arr from lo (inclusive) to hi (exclusive)… 

 
Pick arr[lo] or arr[hi-1] 

•  Fast, but worst-case occurs with mostly sorted input 

Pick random element in the range 
•  Does as well as any technique, but (pseudo)random number 

generation can be slow 
•  Still probably the most elegant approach 

Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2] 
•  Common heuristic that tends to work well 



PARTITIONING 
Conceptually simple, but hardest part to code up correctly 

•  After picking pivot, need to partition in linear time in place 

One approach (there are slightly fancier ones): 
1.  Swap pivot with arr[lo] 
2.  Use two counters i and j, starting at lo+1 and hi-1 
3.   while (i < j) 

   if (arr[j] > pivot) j-- 
   else if (arr[i] < pivot) i++ 
   else swap arr[i] with arr[j] 

4.  Swap pivot with arr[i] * 

*skip step 4 if pivot ends up being least element 

32 



EXAMPLE 
Step one: pick pivot as median of 3 

•  lo = 0, hi = 10 

 

6 1 4 9 0 3 5 2 7 8 
0 1 2 3 4 5 6 7 8 9 

•  Step two: move pivot to the lo position 

8 1 4 9 0 3 5 2 7 6 
0 1 2 3 4 5 6 7 8 9 



EXAMPLE 
Now partition in place 
 
 
Move cursors 
 
 
Swap 
 
Move cursors 
 
 
Move pivot 
 

6 1 4 9 0 3 5 2 7 8 

6 1 4 9 0 3 5 2 7 8 

6 1 4 2 0 3 5 9 7 8 

6 1 4 2 0 3 5 9 7 8 

Often have more than  
one swap during partition –  
this is a short example 

5 1 4 2 0 3 6 9 7 8 



CUTOFFS 
For small n, all that recursion tends to cost more than doing a 
quadratic sort 

•  Remember asymptotic complexity is for large n 

Common engineering technique: switch algorithm below a 
cutoff 

•  Reasonable rule of thumb: use insertion sort for n < 10 

Notes: 
•  Could also use a cutoff for merge sort 
•  Cutoffs are also the norm with parallel algorithms  

•  Switch to sequential algorithm 
•  None of this affects asymptotic complexity 



ASYMPTOTIC RUNTIME 
OF RECURSION 

Recurrence Definition: 
A recurrence is a recursive definition of a function in terms of 
smaller values. 

Example: Fibonacci numbers.  
 

To analyze the runtime of recursive code, we use a recurrence 
by splitting the work into two pieces: 

•  Non-Recursive Work 
•  Recursive Work 



RECURSIVE VERSION OF SUM: 

What’s the recurrence T(n)? 
•  Non-Recursive Work: O(1) 
•  Recursive Work: T(n/2) * 2 halves 

T(n) = O(1) + 2*T(n/2) 

int sum(int[] arr){ 
   return help(arr,0,arr.length); 
} 
int help(int[] arr, int lo, int hi) { 
   if(lo==hi)   return 0; 
   if(lo==hi-1) return arr[lo];    
   int mid = (hi+lo)/2; 
   return help(arr,lo,mid) + help(arr,mid,hi); 
} 
    



SOLVING THAT 
RECURRENCE RELATION 

1.  Determine the recurrence relation.  What is the base case? 
•  If T(1) = 1, then T(n) = 1 + 2*T(n/2)   

2.  “Expand” the original relation to find an equivalent general expression 
in terms of the number of expansions. 

•  T(n)  = 1 + 2 * T(n / 2) 
          = 1 + 2 + 2 * T(n / 4) 
          = 1 + 2 + 4 + ...  for log(n) times 
   = … 

                  = 2(log n) – 1  
 

3.  Find a closed-form expression by setting the number of expansions to 
a value which reduces the problem to a base case 

•  So T(n) is O(n) 
 

Explanation: it adds each number once while doing little else 
 



SOLVING RECURRENCE RELATIONS 
EXAMPLE 2 

1.  Determine the recurrence relation.  What is the base case? 
•  If  T(n) = 10 + T(n/2) and T(1) = 10   

2.  “Expand” the original relation to find an equivalent general 
expression in terms of the number of expansions. 

•  T(n)  = 10 + 10 + T(n/4) 
          = 10 + 10 + 10 + T(n/8) 

                 = … 
                 = 10k + T(n/(2k)) 
 

3.  Find a closed-form expression by setting the number of 
expansions to a value which reduces the problem to a base 
case 

•  n/(2k) = 1 means n = 2k  means k = log2 n 
•  So T(n) = 10 log2 n + 8  (get to base case and do it) 
•  So T(n) is O(log n) 

 



REALLY COMMON 
RECURRENCES 
You can recognize some really common recurrences: 
 

 T(n) = O(1) + T(n-1)    linear 
 T(n) = O(1) + 2T(n/2)    linear  
 T(n) = O(1) + T(n/2)    logarithmic O(log n) 
 T(n) = O(1) + 2T(n-1)    exponential  
 T(n) = O(n) + T(n-1)    quadratic 
 T(n) = O(n) + T(n/2)    linear 
 T(n) = O(n) + 2T(n/2)    O(n log n) (divide 

and conquer sort) 
 

 
Note big-Oh can also use more than one variable 
Example: can sum all elements of an n-by-m matrix in O(nm) 



QUICK SORT ANALYSIS 
Best-case: Pivot is always the median 

  T(0)=T(1)=1 
  T(n)=2T(n/2) + n           -- linear-time partition 
  Same recurrence as mergesort: O(n log n) 

 
Worst-case: Pivot is always smallest or largest element 

  T(0)=T(1)=1 
              T(n) = 1T(n-1)  + n    

  Basically same recurrence as selection sort: O(n2) 
 
Average-case (e.g., with random pivot) 

•  O(n log n), not responsible for proof 
 


