
CSE 373
MAY 22ND – EVEN MORE SORTING

ASSORTED MINUTIAE
•  HW6 out tonight – Due next Tuesday at

midnight

ASSORTED MINUTIAE
•  HW6 out tonight – Due next Tuesday at

midnight
•  Extra assignment – Due next Friday, last day

of class

ASSORTED MINUTIAE
•  HW6 out tonight – Due next Tuesday at

midnight
•  Extra assignment – Due next Friday, last day

of class
•  No late days for this one

REVIEW
•  Slow sorts

REVIEW
•  Slow sorts

•  O(n2)

REVIEW
•  Slow sorts

•  O(n2)
•  Insertion

REVIEW
•  Slow sorts

•  O(n2)
•  Insertion
•  Selection

REVIEW
•  Slow sorts

•  O(n2)
•  Insertion
•  Selection

•  Fast sorts

REVIEW
•  Slow sorts

•  O(n2)
•  Insertion
•  Selection

•  Fast sorts
•  O(n log n)

REVIEW
•  Slow sorts

•  O(n2)
•  Insertion
•  Selection

•  Fast sorts
•  O(n log n)
•  Heap sort

IN-PLACE HEAP SORT
•  Treat the initial array as a heap (via buildHeap)
•  When you delete the ith element, put it at arr[n-i]

•  That array location isn’t needed for the heap anymore!

4 7 5 9 8 6 10 3 2 1

sorted part heap part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part

put the min at the end of the heap
data

SORTING: THE BIG
PICTURE

Simple	

algorithms:	

O(n2)	

Fancier	

algorithms:	

O(n	
 log	
 n)	

Comparison	

lower	
 bound:	

Ω(n	
 log	
 n)	

Specialized	

algorithms:	

O(n)	

Handling	

huge	
 data	

sets	

Inser?on	
 sort	

Selec?on	
 sort	

Shell	
 sort	

…

Heap	
 sort	

Merge	
 sort	

Quick	
 sort	
 (avg)	

…	

Bucket	
 sort	

Radix	
 sort	

External	

sor?ng	

DIVIDE AND CONQUER
Divide-and-conquer is a useful technique for solving many kinds of
problems (not just sorting). It consists of the following steps:

1. Divide your work up into smaller pieces (recursively)
2. Conquer the individual pieces (as base cases)
3. Combine the results together (recursively)

algorithm(input) {!
!if (small enough) {!
! !CONQUER, solve, and return input!
!} else {!
! !DIVIDE input into multiple pieces!
! !RECURSE on each piece!
! !COMBINE and return results!
!}!

}!

DIVIDE-AND-CONQUER
SORTING

Two great sorting methods are fundamentally divide-and-conquer

Mergesort:

Sort the left half of the elements (recursively)
Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole

Quicksort:

Pick a “pivot” element
Divide elements into less-than pivot and greater-than pivot
Sort the two divisions (recursively on each)
Answer is: sorted-less-than....pivot....sorted-greater-than

MERGE SORT

Unsorted

Unsorted Unsorted

Divide: Split array roughly into half

Sorted

Sorted Sorted

Conquer: Return array when length ≤ 1

Combine: Combine two sorted arrays using merge

MERGE SORT:
PSEUDOCODE
Core idea: split array in half, sort each half, merge back
together. If the array has size 0 or 1, just return it unchanged

mergesort(input) {!
!if (input.length < 2) {!
! !return input;!
!} else {!
! !smallerHalf = sort(input[0, ..., mid]);!
! !largerHalf = sort(input[mid + 1, ...]);!
! !return merge(smallerHalf, largerHalf);!
!}!

}!

MERGE SORT
EXAMPLE

7 2 8 4 5 3 1 6

7 2 8 4

7 2

7 2

8 4

8 4

5 3 1 6

5 3 1 6

5 3 1 6

MERGE SORT
EXAMPLE

19

1 2 3 4 5 6 7 8

2 4 7 8

2 7

7 2

4 8

8 4

1 3 5 6

3 5 1 6

5 3 1 6

MERGE SORT
ANALYSIS

Runtime:
•  subdivide the array in half each time: O(log(n)) recursive calls
•  merge is an O(n) traversal at each level

So, the best and worst case runtime is the same: O(n log(n))

O(log(n))
levels

MERGE SORT
ANALYSIS

Stable?
Yes! If we implement the merge function correctly, merge sort
will be stable.

In-place?
No. Unless you want to give yourself a headache. Merge must
construct a new array to contain the output, so merge sort is not
in-place.

We’re constantly copying and creating new arrays at each
level...

One Solution: (less of a headache than actually implementing
in-place) create a single auxiliary array and swap between
it and the original on each level.

QUICK SORT

5

2 8 4 7 3 1 6

Divide: Split array around a ‘pivot’

5

2 4

3

7

6

8

1

numbers <=
pivot

numbers > pivot

pivo
t

QUICK SORT

Unsorted

<= P > P

Divide: Pick a pivot, partition into
groups

Sorted

<= P > P

Conquer: Return array when length
≤ 1

Combine: Combine sorted partitions and pivot

P

P

QUICK SORT
PSEUDOCODE
Core idea: Pick some item from the array and call it the pivot. Put all
items smaller in the pivot into one group and all items larger in the
other and recursively sort. If the array has size 0 or 1, just return it
unchanged.

quicksort(input) {!
!if (input.length < 2) {!
! !return input;!
!} else {!
! !pivot = getPivot(input);!
! !smallerHalf = sort(getSmaller(pivot, input));!
! !largerHalf = sort(getBigger(pivot, input));!
! !return smallerHalf + pivot + largerHalf;!
!}!

}!

QUICKSORT

13
81

92
43

65

31 57

26

75
0

S select pivot value

13 81 92
43 65

31

57 26

75 0
S1 S2 partition S

13 43 31 57 26 0

S1
81 92 75 65

S2
Quicksort(S1) and

Quicksort(S2)

13 43 31 57 26 0 65 81 92 75 S Presto! S is sorted

[Weiss]

QUICKSORT

26

2 4 3 1 8 9 6

2 1 9 4 6

 2

 1 2

 1 2 3 4

 1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

5

8 3

1

6 8 9

DETAILS
Have not yet explained:

DETAILS
Have not yet explained:

How to pick the pivot element

•  Any choice is correct: data will end up sorted
•  But as analysis will show, want the two partitions to be about

equal in size

DETAILS
Have not yet explained:

How to pick the pivot element

•  Any choice is correct: data will end up sorted
•  But as analysis will show, want the two partitions to be about

equal in size

How to implement partitioning
•  In linear time
•  In place

PIVOTS
Best pivot?

•  Median
•  Halve each time

Worst pivot?
•  Greatest/least element
•  Problem of size n - 1
•  O(n2)

2 4 3 1 8 9 6

8 2 9 4 5 3 1 6

5

8 2 9 4 5 3 6

8 2 9 4 5 3 1 6

1

POTENTIAL PIVOT
RULES
While sorting arr from lo (inclusive) to hi (exclusive)…

Pick arr[lo] or arr[hi-1]

•  Fast, but worst-case occurs with mostly sorted input

Pick random element in the range
•  Does as well as any technique, but (pseudo)random number

generation can be slow
•  Still probably the most elegant approach

Median of 3, e.g., arr[lo], arr[hi-1], arr[(hi+lo)/2]
•  Common heuristic that tends to work well

PARTITIONING
Conceptually simple, but hardest part to code up correctly

•  After picking pivot, need to partition in linear time in place

One approach (there are slightly fancier ones):
1.  Swap pivot with arr[lo]
2.  Use two counters i and j, starting at lo+1 and hi-1
3.   while (i < j)

 if (arr[j] > pivot) j--
 else if (arr[i] < pivot) i++
 else swap arr[i] with arr[j]

4.  Swap pivot with arr[i] *

*skip step 4 if pivot ends up being least element

32

EXAMPLE
Step one: pick pivot as median of 3

•  lo = 0, hi = 10

6 1 4 9 0 3 5 2 7 8
0 1 2 3 4 5 6 7 8 9

•  Step two: move pivot to the lo position

8 1 4 9 0 3 5 2 7 6
0 1 2 3 4 5 6 7 8 9

EXAMPLE
Now partition in place

Move cursors

Swap

Move cursors

Move pivot

6 1 4 9 0 3 5 2 7 8

6 1 4 9 0 3 5 2 7 8

6 1 4 2 0 3 5 9 7 8

6 1 4 2 0 3 5 9 7 8

Often have more than
one swap during partition –
this is a short example

5 1 4 2 0 3 6 9 7 8

CUTOFFS
For small n, all that recursion tends to cost more than doing a
quadratic sort

•  Remember asymptotic complexity is for large n

Common engineering technique: switch algorithm below a
cutoff

•  Reasonable rule of thumb: use insertion sort for n < 10

Notes:
•  Could also use a cutoff for merge sort
•  Cutoffs are also the norm with parallel algorithms

•  Switch to sequential algorithm
•  None of this affects asymptotic complexity

ASYMPTOTIC RUNTIME
OF RECURSION

Recurrence Definition:
A recurrence is a recursive definition of a function in terms of
smaller values.

Example: Fibonacci numbers.

To analyze the runtime of recursive code, we use a recurrence
by splitting the work into two pieces:

•  Non-Recursive Work
•  Recursive Work

RECURSIVE VERSION OF SUM:

What’s the recurrence T(n)?
•  Non-Recursive Work: O(1)
•  Recursive Work: T(n/2) * 2 halves

T(n) = O(1) + 2*T(n/2)

int sum(int[] arr){
 return help(arr,0,arr.length);
}
int help(int[] arr, int lo, int hi) {
 if(lo==hi) return 0;
 if(lo==hi-1) return arr[lo];
 int mid = (hi+lo)/2;
 return help(arr,lo,mid) + help(arr,mid,hi);
}

SOLVING THAT
RECURRENCE RELATION

1.  Determine the recurrence relation. What is the base case?
•  If T(1) = 1, then T(n) = 1 + 2*T(n/2)

2.  “Expand” the original relation to find an equivalent general expression
in terms of the number of expansions.

•  T(n) = 1 + 2 * T(n / 2)
 = 1 + 2 + 2 * T(n / 4)
 = 1 + 2 + 4 + ... for log(n) times
 = …

 = 2(log n) – 1

3.  Find a closed-form expression by setting the number of expansions to
a value which reduces the problem to a base case

•  So T(n) is O(n)

Explanation: it adds each number once while doing little else

SOLVING RECURRENCE RELATIONS
EXAMPLE 2

1.  Determine the recurrence relation. What is the base case?
•  If T(n) = 10 + T(n/2) and T(1) = 10

2.  “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

•  T(n) = 10 + 10 + T(n/4)
 = 10 + 10 + 10 + T(n/8)

 = …
 = 10k + T(n/(2k))

3.  Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base
case

•  n/(2k) = 1 means n = 2k means k = log2 n
•  So T(n) = 10 log2 n + 8 (get to base case and do it)
•  So T(n) is O(log n)

REALLY COMMON
RECURRENCES
You can recognize some really common recurrences:

 T(n) = O(1) + T(n-1) linear
 T(n) = O(1) + 2T(n/2) linear
 T(n) = O(1) + T(n/2) logarithmic O(log n)
 T(n) = O(1) + 2T(n-1) exponential
 T(n) = O(n) + T(n-1) quadratic
 T(n) = O(n) + T(n/2) linear
 T(n) = O(n) + 2T(n/2) O(n log n) (divide

and conquer sort)

Note big-Oh can also use more than one variable
Example: can sum all elements of an n-by-m matrix in O(nm)

QUICK SORT ANALYSIS
Best-case: Pivot is always the median

 T(0)=T(1)=1
 T(n)=2T(n/2) + n -- linear-time partition
 Same recurrence as mergesort: O(n log n)

Worst-case: Pivot is always smallest or largest element

 T(0)=T(1)=1
 T(n) = 1T(n-1) + n

 Basically same recurrence as selection sort: O(n2)

Average-case (e.g., with random pivot)

•  O(n log n), not responsible for proof

