
CSE 373
MAY 19TH – EVEN MORE SORTING

ASSORTED MINUTIAE
•  HW5 Due Tonight – Code + Writeup

ASSORTED MINUTIAE
•  HW5 Due Tonight – Code + Writeup
•  HW6 Out Monday – Covers Sorting

ASSORTED MINUTIAE
•  HW5 Due Tonight – Code + Writeup
•  HW6 Out Monday – Covers Sorting
•  Extra assignments are out

ASSORTED MINUTIAE
•  HW5 Due Tonight – Code + Writeup
•  HW6 Out Monday – Covers Sorting
•  Extra assignments are out

•  Small change, instead of throwing an
ObjectNotFound exception, throw a
NoSuchElement exception.
(which is in java.util)

ASSORTED MINUTIAE
•  Eclipse run configurations

ASSORTED MINUTIAE
•  Eclipse run configurations

•  It is possible to pass command line
arguments in Eclipse under run
configurations

ASSORTED MINUTIAE
•  Eclipse run configurations

•  It is possible to pass command line
arguments in Eclipse under run
configurations

•  If you have edited your main function in
FindPahts so that it does not use the String[]
args commands, please return it to it’s old
state. This is part of the testing script.

SORTING
•  Problem statement:

•  Collection of Comparable data

SORTING
•  Problem statement:

•  Collection of Comparable data
•  Result should be a sorted collection of the

data

SORTING
•  Problem statement:

•  Collection of Comparable data
•  Result should be a sorted collection of the

data
•  Motivation?

SORTING
•  Problem statement:

•  Collection of Comparable data
•  Result should be a sorted collection of the

data
•  Motivation?

•  Pre-processing v. find times

SORTING
•  Problem statement:

•  Collection of Comparable data
•  Result should be a sorted collection of the

data
•  Motivation?

•  Pre-processing v. find times
•  Sorting v. Maintaining sortedness

SORTING
•  Important definitions

SORTING
•  Important definitions

•  In-place:

SORTING
•  Important definitions

•  In-place: Requires only O(1) extra memory

SORTING
•  Important definitions

•  In-place: Requires only O(1) extra memory
•  usually means the array is mutated

SORTING
•  Important definitions

•  In-place: Requires only O(1) extra memory
•  usually means the array is mutated

•  Stable: For any two elements have the same
comparative value, then after the sort, which
ever came first will stay first

SORTING
•  Important definitions

•  In-place: Requires only O(1) extra memory
•  usually means the array is mutated

•  Stable: For any two elements have the same
comparative value, then after the sort, which
ever came first will stay first

•  Sorting by first name and then last name
will give you last then first with a stable
sort.

SORTING
•  Important definitions

•  In-place: Requires only O(1) extra memory
•  usually means the array is mutated

•  Stable: For any two elements have the same
comparative value, then after the sort, which
ever came first will stay first

•  Sorting by first name and then last name
will give you last then first with a stable
sort.

•  The most recent sort will always be the
primary

SORTING
•  Important definitions

•  Interruptable:

SORTING
•  Important definitions

•  Interruptable: the algorithm can run only until
the first k elements are in sorted order

SORTING
•  Important definitions

•  Interruptable: the algorithm can run only until
the first k elements are in sorted order

•  Comparison sort: utilizes comparisons
between elements to produce the final sorted
order.

SORTING
•  Important definitions

•  Interruptable: the algorithm can run only until
the first k elements are in sorted order

•  Comparison sort: utilizes comparisons
between elements to produce the final sorted
order.

•  Bogo sort is not a comparison sort

SORTING
•  Important definitions

•  Interruptable: the algorithm can run only until
the first k elements are in sorted order

•  Comparison sort: utilizes comparisons
between elements to produce the final sorted
order.

•  Bogo sort is not a comparison sort
•  Comparison sorts are Ω(n log n), they cannot do

better than this

SORTING
•  What are the sorts we’ve seen so far?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort:

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable? How?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable? How?
•  When you have your lowest candidate, do not replace

with an element that ties.

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable? How?
•  When you have your lowest candidate, do not replace

with an element that ties.
•  In place?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable? How?
•  When you have your lowest candidate, do not replace

with an element that ties.
•  In place? Can be, but can also create a separate collection

(if we only want the top 5, for example)

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – what case is this?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case:

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n)

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

•  Stable?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

•  Stable? Same as before, if we maintain sorted order in
case of ties.

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

•  Stable? Same as before, if we maintain sorted order in
case of ties.

•  In-place?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of the

array. For each new element, we swap it into the sorted
portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

•  Stable? Same as before, if we maintain sorted order in case
of ties.

•  In-place? Can be easily. Since not interruptable, having a
duplicate array is only necessary if you don’t want the original
array to be mutated

SORTING
•  What other sorting techniques can we

consider?

SORTING
•  What other sorting techniques can we

consider?
•  We know O(n log n) is possible. How do we do it?

SORTING
•  What other sorting techniques can we

consider?
•  We know O(n log n) is possible. How do we do it?
•  Heap sort works on principles we already know.

SORTING
•  What other sorting techniques can we

consider?
•  We know O(n log n) is possible. How do we do it?
•  Heap sort works on principles we already know.

•  Building a heap from an array takes O(n) time

SORTING
•  What other sorting techniques can we

consider?
•  We know O(n log n) is possible. How do we do it?
•  Heap sort works on principles we already know.

•  Building a heap from an array takes O(n) time
•  Removing the smallest element from the array takes

O(log n)

SORTING
•  What other sorting techniques can we

consider?
•  We know O(n log n) is possible. How do we do it?
•  Heap sort works on principles we already know.

•  Building a heap from an array takes O(n) time
•  Removing the smallest element from the array takes

O(log n)
•  There are n elements.

SORTING
•  What other sorting techniques can we

consider?
•  We know O(n log n) is possible. How do we do it?
•  Heap sort works on principles we already know.

•  Building a heap from an array takes O(n) time
•  Removing the smallest element from the array takes

O(log n)
•  There are n elements.
•  N + N*log N = O(N log N)

SORTING
•  What other sorting techniques can we

consider?
•  We know O(n log n) is possible. How do we do it?
•  Heap sort works on principles we already know.

•  Building a heap from an array takes O(n) time
•  Removing the smallest element from the array takes

O(log n)
•  There are n elements.
•  N + N*log N = O(N log N)
•  Using Floyd’s method does not improve the asymptotic

runtime for heap sort, but it is an improvement.

HEAP SORT
•  How do we actually implement this sort?

•  Can we do it in place?

HEAP SORT
•  How do we actually implement this sort?

•  Can we do it in place?

IN-PLACE HEAP SORT
•  Treat the initial array as a heap (via buildHeap)
•  When you delete the ith element, put it at arr[n-i]

•  That array location isn’t needed for the heap anymore!

4 7 5 9 8 6 10 3 2 1

sorted part heap part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part

put the min at the end of the heap
data

HEAP SORT
•  How do we actually implement this sort?

•  Can we do it in place?
•  Is this sort stable?

HEAP SORT
•  How do we actually implement this sort?

•  Can we do it in place?
•  Is this sort stable?

•  No. Recall that heaps do not preserve FIFO
property

HEAP SORT
•  How do we actually implement this sort?

•  Can we do it in place?
•  Is this sort stable?

•  No. Recall that heaps do not preserve FIFO
property

•  If it needed to be stable, we would have to
modify the priority to indicate its place in the
array, so that each element has a unique
priority.

IN-PLACE HEAP SORT

4 7 5 9 8 6 10 3 2 1

sorted part heap part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part

put the min at the end of the heap
data

What is undesirable about this method?

IN-PLACE HEAP SORT

4 7 5 9 8 6 10 3 2 1

sorted part heap part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part

put the min at the end of the heap
data

What is undesirable about this method?
 You must reverse the array at the end.

HEAP SORT
•  Can implement with a max-heap, then the

sorted portion of the array fills in from the
back and doesn’t need to be reversed at the
end.

“AVL SORT”? “HASH SORT”?
AVL Tree: sure, we can also use an AVL tree to:

“AVL SORT”? “HASH SORT”?
AVL Tree: sure, we can also use an AVL tree to:

•  insert each element: total time O(n log n)
•  Repeatedly deleteMin: total time O(n log n)

•  Better: in-order traversal O(n), but still O(n log n) overall
•  But this cannot be done in-place and has worse constant

factors than heap sort

“AVL SORT”? “HASH SORT”?
AVL Tree: sure, we can also use an AVL tree to:

•  insert each element: total time O(n log n)
•  Repeatedly deleteMin: total time O(n log n)

•  Better: in-order traversal O(n), but still O(n log n) overall
•  But this cannot be done in-place and has worse constant

factors than heap sort

Hash Structure: don’t even think about trying to sort with a
hash table!

“AVL SORT”? “HASH SORT”?
AVL Tree: sure, we can also use an AVL tree to:

•  insert each element: total time O(n log n)
•  Repeatedly deleteMin: total time O(n log n)

•  Better: in-order traversal O(n), but still O(n log n) overall
•  But this cannot be done in-place and has worse constant

factors than heap sort

Hash Structure: don’t even think about trying to sort with a
hash table!

•  Finding min item in a hashtable is O(n), so this would be a
slower, more complicated selection sort

SORTING: THE BIG
PICTURE

Simple	
algorithms:	

O(n2)	

Fancier	
algorithms:	
O(n	 log	 n)	

Comparison	
lower	 bound:	
Ω(n	 log	 n)	

Specialized	
algorithms:	

O(n)	

Handling	
huge	 data	

sets	

Inser?on	 sort	
Selec?on	 sort	
Shell	 sort	
…

Heap	 sort	
Merge	 sort	
Quick	 sort	 (avg)	
…	

Bucket	 sort	
Radix	 sort	

External	
sor?ng	

DIVIDE AND CONQUER
Divide-and-conquer is a useful technique for solving many kinds of
problems (not just sorting). It consists of the following steps:

1. Divide your work up into smaller pieces (recursively)
2. Conquer the individual pieces (as base cases)
3. Combine the results together (recursively)

algorithm(input) {!
!if (small enough) {!
! !CONQUER, solve, and return input!
!} else {!
! !DIVIDE input into multiple pieces!
! !RECURSE on each piece!
! !COMBINE and return results!
!}!

}!

DIVIDE-AND-CONQUER
SORTING

Two great sorting methods are fundamentally divide-and-conquer

Mergesort:

Sort the left half of the elements (recursively)
Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole

Quicksort:

Pick a “pivot” element
Divide elements into less-than pivot and greater-than pivot
Sort the two divisions (recursively on each)
Answer is: sorted-less-than....pivot....sorted-greater-than

