CSE 373

MAY 17™ - COMPARISON SORTS

ASSORTED MINUTIAE

« HWS Due Friday — Code + Writeup

« HWG6 on Sorting — Out Friday, due following
Friday

- Extra assignment out tonight, due June 2nd

* No late days

SORTING

INEFFECTIVE SORTS

DEFINE. HALFHEARTEDMERGESORT (LisT):
IF LENGTH(LIOT) < 2:
RETORN LIST
PIVOT = INT (LENGTH(LIST) / 2)
A = HALFHEARTEDMERGE SORT (LIST(: PM)TJg
B = HALFHEARTEDMERGE SORT (LIST [PVOT:]
// OMMMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTM\ZED BOGOSORT
// RUNS IN O(N LoGN)
FOR N FROM 1. TO LOG(LENGTH(LIST)):
SHUFFLE(LIST):
IF I550RTED (LIST):
REURN (ST
RETURN “KERNEL PRGE FRULT (ERROR CODE: 2)°

DEFINE JOBINTERVIEW QUICKSORT(LIST):
0K S0 YOU CHOOSE. A PVOT
THEN DIVDE THE ST IN HALF
FOR EACH HALF:
(HECX To SEE IF ITS SORED
NO, WAIT, ITDOESN'T MATTER
COMPRRE EACH ELEMENT To THE PIVOT
THE BIGGER ONES GO IN ANBJ \ST
THE EQUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS 1S LST A
THE NEW ONE 1S LIST B
PUT THE BIG ONES INTO UST B
NOW TAKE THE SECOND LIST
CALL IT ST, UH, AZ
WHICH ONE WRS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSIVELY CAUS SELF
UNTIL BOTH LISt ARE EMPTY
RIGHT?
NOT” EMPTY, BUT YOU KNOW WHAT T MEAN
AM I ALLOWED T USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(LST):
IF ISSORTED (LIST):
REURN LIST
FOR N FRoM 1 T© 10000:
PIVOT = RANDOM (0, LENGTH(LIST))
LsT = ust [Pvor:]+ LIsT:PvoT]
IF 1I550RTED(UST):
RETORN LS
IF ISSORTED(LIST):
RETURN UST:
IF 1ISSORTED(LIST): //THIS CAN'T BE HAPPENING
RETORN LIST
IF 15SORTED (L\ST): // COME ON COME ON
RETURN UST
/| OH JEEZ
// T GONNA BE IN 50 MUCH TROUBLE
ust=L1]
SYSTEM (“SHUTDOWN -H +5™)
SYSTEM (“RM -RF /")
SYSTEM ("RM -RF ~/+")
SYSTEM("RM -RF /")
SYSTEM(RD /5 /Q C:**) //PORTABILTY
RETURN [1,2, 3,4, 5]

SORTING

* Problem statement:
« Given some collection of comparable data,
arrange them into an organized order

* Important to note that you may be able to
“‘organize” the same data different ways

SORTING

« Why sort at all?

- Data pre-processing

 |If we do the work now, future operations may
be faster

* Unsorted v. Sorted Array, e.g.
* Why not just maintain sortedness as we
add?
* Most times, if we can, we should
* Why would we not be able to?

SORTING

* Maintaining Sortedness v. Sorting

* Why don’t we maintain sortedness?
- Data comes in batches
* Multiple “sorted” orders
» Costly to maintain!

« We need to be sure that the effort is worth
the work

* No free lunch!
« What does that even mean?

BOGO SORT

« Consider the following sorting algorithm

« Shuffle the list into a random order
* Check if the list is sorted,
* if so return the list
* if not, try again
« What is the problem here?
* Runtime! Average O(n!)!
* Why is this so bad?

 The computer isn’t thinking, it’s just guess-and-
checking

SORTING

« Guess-and-check

* Not a bad strategy when nothing else is obvious
* Breaking RSA
Greedy-first algorithms
Final exams

 If you don’t have a lot of time, or if the payoff is
big, or if the chance of success is high, then it
might be a good strategy

- Random/Approximized algs

SORTING

 Why not guess-and-check for sorting?

Not taking advantage of the biggest constraint of
the problem

Items must be comparable!
You should be comparing things!

Looking at two items next to each other tells a lot
about where they belong in the list, there’s no
reason not to use this information.

SORTING

+ Types of sorts

« Comparison sorts
* Bubble sort
* |nsertion sort
« Selection sort
* Heap sort, efc...
« “Other” sorts
» Bucket sort — will talk about later
* Bogo sort

MORE REASONS TO
SORT

General technique in computing:

Preprocess data to make subsequent operations faster

Example: Sort the data so that you can

* Find the k! largest in constant time for any k
* Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends
on

* How often the data will change (and how much it will change)
* How much data there is

MORE DEFINITIONS
In-Place Sort:

A sorting algorithm is in-place if it requires only O(1) extra
space to sort the array.

» Usually modifies input array

» Can be useful: lets us minimize memory

Stable Sort:

A sorting algorithm is stable if any equal items remain in the
same relative order before and after the sort.

* Iltems that 'compare’ the same might not be exact duplicates
* Might want to sort on some, but not all attributes of an item
« Can be useful to sort on one attribute first, then another one

STABLE SORT EXAMPLE
Input:

[(8, "fox"), (9, "dog"), (4, "wolf"), (8, "cow")]
Compare function: compare pairs by number only

Output (stable sort):
[(4, "wolf"), (8, "fox"), (8, "cow"), (9, "dog")]

Output (sort):
[(4, "wolf") , (8, "fox"), (9, "dog")]

SORTING: THE BIG
PICTURE

Fancier Comparison
algorithms: lower bound:
O(n log n) Q(n log n)
Insertion sort Heap sort
Selection sort Merge sort

Quick sort (avg)

Specialized
algorithms:
O(n)

|

Bucket sort
Radix sort

Handling
huge data
sets

INSERTION SORT

current item

‘_L\

insert where it belongs in
sorted section

N

| J \

! |

\ J L

I Y

already already
sorted unsorted sorted unsorted
shift other elements over and new current item
already sorted section is now larger =
l ']\ ' \ Y J | v
already already
sorted unsorted

sorted unsorted

INSERTION SORT

Idea: At step k, put the kt" element in the correct position among the first k
elements

for (int i = 0; 1 < n; i++) {
int newIndex = findPlace(1i);

shift(newIndex, 1i);

What can we say about the list at loop i? first i elements are sorted
(not necessarily lowest in the list)

Runtime? Best case: O(n), Worst case: O(n?) Why?
Stable? Usually In-place? Yes

SELECTION SORT swap

| N

currentindex next smallest currentindex next smalles

L i

\) \ J |\
! l Y / ! Y

already already
sorted unsorted sorted unsorted
3 t 4
nex
now ‘already sorted’ section is one index next 3”{‘3'_'\
larger
7 |5
\ Y J \ i) | T 7\ Y
already already
sorted unsorted

sorted unsorted

SELECTION SORT

« Can be interrupted (don’t need to sort the whole
array to get the first element)

 Doesn’t need to mutate the original array (if the
array has some other sorted order)

 Stable sort

INSERTION SORT VS.
SELECTION SORT

Have the same worst-case and average-case asymptotic
complexity

* Insertion-sort has better best-case complexity; preferable
when input is “mostly sorted”

Useful for small arrays or for mostly sorted input

SORTING: THE BIG
PICTURE

Simple Comparison
algorithms: lower bound:
O(n?) Q(n log n)
Insertion sort Heap sort
Selection sort Merge sort

Quick sort (avg)

Specialized
algorithms:
O(n)

|

Bucket sort
Radix sort

Handling
huge data
sets

NEXT CLASS

* Fancier sorts!

 How fancy can we get?

