
CSE 373
MAY 15TH – ITERATORS

ASSORTED MINUTIAE
•  HW4 feedback delayed

•  HW5 code now due Friday
•  Extra assignment out tomorrow
•  Final Exam – Tue Jun 6, 2:30-4:20 SMI 120

•  If you cannot make this exam, I need to know
by the end of the week

•  Make up exam will be offered either late on
the last Friday or during the day Saturday

EXTRA ASSIGNMENT
•  Out Wednesday
•  AVL implementation

•  Will replace lowest grade, for any HW
assignment part

•  Up to 50 points possible, so can earn up to
25 points of EC

•  25 points for correct implementation of AVL
•  10 points for implementing a BFSIterator
•  15 points for writing an AVL test suite

EXTRA ASSIGNMENT
•  Alternatively, you may complete the write-up

assignment
•  Write up will be a 3-5 page write up about splay

trees
•  I expect consideration of runtime, memory,

design and implementation as well as an
understanding of “amortized analysis”

•  Points for this write up are capped at 25 points

EXTRA ASSIGNMENT
•  You may only complete one of the two

assignments
•  Due: Friday June 2nd (the last day of class) at

midnight
•  No late submissions will be allowed

•  The assignment will close at 12:30 am, but any
submissions turned in after midnight will be
accepted at my discretion – 12:01 is likely to be
okay, but 12:29 will not be.

ITERATORS
•  An iterator is a Java object that goes over

collection of data
•  Supports two functions

•  boolean hasNext(): returns true if the
iterator has another object

•  E next(): returns the next object from the
data structure
•  “E” is a Java generic and it represents

whatever data is actually in the data
structure.

ITERATORS
•  What is “next”?

•  Depends on how we want to iterate through the
graph

•  Does not have to be a complete traversal
•  Examples:

•  BFSIterator
•  PathIterator
•  DuplicateIterator
•  SortedIterator

ITERATORS
•  These may have different runtimes, depending

on how long it takes to find the next object
•  Example, let’s consider an iterator which finds

all people with the same first name in an
unsorted linked list.
•  Suppose that the data is a First Name, Last Name object
•  What does the iterator need to keep track of?

•  Which element it’s on
•  What first name it’s looking for

ITERATORS
•  What happens at each call of next()?

•  Think of the iterator as a cursor
•  Right now, the cursor can only move forward (since it’s a

singly-linked list)
•  Go forward, checking each node until you find the next

object with the searching name
•  Since the iterator is an object itself, it keeps track of all this

information in between calls—separate from the data
structure!

•  But, the iterator can access private nodes of the data
structure and provide new orderings for the client

•  Linked lists are somewhat simple, but what about a more
general case?

ITERATORS
•  Graph iterators

•  How do we implement a BFS iterator?
•  Need to maintain the queue
•  Keep track of visited nodes

•  At each call of “next()” we return the next item in
the queue and process its children

•  Same approach as the traversal, but iterators
can terminate early and do not have to traverse
the whole graph

ITERATORS
•  What about a path iterator?
•  Given two connected vertices in a graph,

provide an iterator that returns all vertices
(including start and end) on the shortest path
between them.

•  How do we do this?
•  Dijkstra’s! Do we need to run the whole algorithm

at once? Yes! You don’t know what the first
edge is until you know the whole path.

•  The iterator then just returns the path one vertex
at a time.

ITERATORS
•  Why iterators?

•  Iterators allow chained related finds within a data
set

•  FindNextPrime requires keeping track of which
primes have been returned AND of finding which
numbers are prime

•  Moves through data in some well known an
organized manner

•  How would a BFSIterator be useful for testing
AVL trees?

TESTING
•  AVL Trees

•  What is an AVL Tree?
•  Dictionary
•  Binary Search Tree
•  Balanced

•  Just using insert() and find(), how can you tell
the difference between an AVLTree and a
BSTree?
•  Insert sorted data and time the difference
•  What if you had a BFSIterator?

TESTING
•  If you can provide the BFSIterator, you can verify

that the AVL tree has the correct balanced shape
•  If you do the extra credit for testing AVL trees,

an iterator is a great tool for verifying the shape.
•  Anything that returns a BFS traversal of the tree,

however, can help observe differences
•  This is not pure black box testing, it requires the

DS to support the iterator to allow the testing.

ITERATORS
•  How do we analyze these?
•  These may have different runtimes, depending

on how long it takes to find the next object
•  Example, let’s consider a SortedIterator over an

unsorted array.
•  What are some approaches that we might use here?

•  We could just sort the array
•  Does all the work in advance

•  Traverse the whole array to find the next element

ITERATORS
•  How might this be problematic?

•  Just keeping track of the “current element”

•  Consider this example
•  On first call, we iterate and find the lowest element (-3)
•  On the second call, remembering that our last was -3, we iterate

to find the lowest element again and find (1)
•  What happens on later calls?

•  Either it skips over 1, because it thinks it’s done it before, or it
repeats 1 because it doesn’t know how many one’s it has found

1 5 7 9 4 1 8 -3

ITERATORS
•  Solutions?

•  Sorting the list in advance is still an option
•  Iterators have a benefit of partial work
•  We can to keep track of which elements we have seen
•  Must build a collection of returned items within the iterator
•  Or we can use a way to indicate that we may still be searching for

duplicates
•  Not trivial to implement

•  What is the runtime of each call to next? O(N)

1 5 7 9 4 1 8 -3

SORTING
•  What then is the total time to return the complete

set of sorted data?
•  N pieces of data at O(N) times
•  O(N2)

•  This is one of the slow sorts
•  This method is called Selection sort
•  We search through the whole list and “select” the

next smallest element

SELECTION SORT
•  What are some benefits of this sorting

technique?
•  Can be interrupted (don’t need to sort the whole

array to get the first element)
•  Doesn’t need to mutate the original array (if the

array has some other sorted order)
•  Preserves the other order if it does exist

•  This is called a stable sort

SELECTION SORT
•  What are some downsides of this sort?

•  O(N2)
•  Must look through all elements each time
•  If done as an iterator, it requires extra memory in

order to implement
•  If we don’t care about the original array, can we

perform a selection sort without extra memory?
•  If a sort only needs a constant amount of memory to

operate, it is called an in-place sort
•  How do we perform an in-place selection sort?

•  Swap the lowest item with the element at the beginning of
the array

SELECTION SORT
•  Swapping Selection

•  We iterate through the list to find the lowest element
•  When we find it (-3), which do we swap with?
•  When we go to find the next element, what do we do?
•  Must search through the entire array, even though the next

element is in the correct place at the start
•  Which 1 do we select? The first one otherwise the sort is

not stable

1 -3 7 9 4 1 8 5

NEXT CLASS
•  “Cool” graph problems
•  New Analysis Trick

•  Recurrences

