CSE 373

MAY 15™ _ ITERATORS




ASSORTED MINUTIAE

- HW4 feedback delayed

 HWS5 code now due Friday
» Extra assignment out tomorrow

* Final Exam — Tue Jun 6, 2:30-4:20 SMI 120

* If you cannot make this exam, | need to know
by the end of the week

« Make up exam will be offered either late on
the last Friday or during the day Saturday




EXTRA ASSIGNMENT

 Out Wednesday
 AVL implementation
* Will replace lowest grade, for any HW
assignment part

« Up to 50 points possible, so can earn up to
25 points of EC

« 25 points for correct implementation of AVL
* 10 points for implementing a BFSlterator
* 15 points for writing an AVL test suite




EXTRA ASSIGNMENT

* Alternatively, you may complete the write-up
assignment

* Write up will be a 3-5 page write up about splay
trees

| expect consideration of runtime, memory,
design and implementation as well as an
understanding of “amortized analysis”

» Points for this write up are capped at 25 points




EXTRA ASSIGNMENT

* You may only complete one of the two
assignments

* Due: Friday June 2" (the last day of class) at
midnight

e No late submissions will be allowed

* The assignment will close at 12:30 am, but any
submissions turned in after midnight will be
accepted at my discretion — 12:01 is likely to be
okay, but 12:29 will not be.




ITERATORS

« An iterator is a Java object that goes over
collection of data

« Supports two functions

* boolean hasNext (): returns true if the
iterator has another object

 E next(): returns the next object from the
data structure

- “E"is a Java generic and it represents
whatever data is actually in the data
structure.




ITERATORS

e What is “next”?

* Depends on how we want to iterate through the
graph
* Does not have to be a complete traversal
- Examples:
- BFSlterator
« Pathlterator
* Duplicatelterator
« Sortedlterator




ITERATORS

 These may have different runtimes, depending
on how long it takes to find the next object

« Example, let’s consider an iterator which finds
all people with the same first name in an
unsorted linked list.

« Suppose that the data is a First Name, Last Name object

« What does the iterator need to keep track of?
Which element it's on
What first name it’s looking for




ITERATORS

 What happens at each call of next()?

Think of the iterator as a cursor

Right now, the cursor can only move forward (since it's a
singly-linked list)

Go forward, checking each node until you find the next
object with the searching name

Since the iterator is an object itself, it keeps track of all this
information in between calls—separate from the data
structure!

But, the iterator can access private nodes of the data
structure and provide new orderings for the client

Linked lists are somewhat simple, but what about a more
general case?




ITERATORS

* Graph iterators

* How do we implement a BFS iterator?
* Need to maintain the queue
« Keep track of visited nodes
« At each call of “next()” we return the next item in
the queue and process its children

« Same approach as the traversal, but iterators
can terminate early and do not have to traverse
the whole graph




ITERATORS

 What about a path iterator?

* Given two connected vertices in a graph,

provide an iterator that returns all vertices
(including start and end) on the shortest path
between them.

How do we do this?

 Dijkstra’s! Do we need to run the whole algorithm
at once? Yes! You don’t know what the first
edge is until you know the whole path.

» The iterator then just returns the path one vertex
at a time.




ITERATORS

 Why iterators?

Iterators allow chained related finds within a data
set

FindNextPrime requires keeping track of which
primes have been returned AND of finding which
numbers are prime

Moves through data in some well known an
organized manner

How would a BFSlterator be useful for testing
AVL trees?




TESTING

 AVL Trees

« What is an AVL Tree?

Dictionary
* Binary Search Tree
» Balanced
« Just using insert() and find(), how can you tell

the difference between an AVLTree and a
BSTree?

* |nsert sorted data and time the difference
- What if you had a BFSlterator?




TESTING

* If you can provide the BFSlterator, you can verify
that the AVL tree has the correct balanced shape

« If you do the extra credit for testing AVL trees,
an iterator is a great tool for verifying the shape.

« Anything that returns a BFS traversal of the tree,
however, can help observe differences

« This is not pure black box testing, it requires the
DS to support the iterator to allow the testing.




ITERATORS

« How do we analyze these?

« These may have different runtimes, depending
on how long it takes to find the next object

 Example, let’s consider a Sortedlterator over an
unsorted array.

- What are some approaches that we might use here?
- We could just sort the array
* Does all the work in advance
« Traverse the whole array to find the next element




ITERATORS

 How might this be problematic?
« Just keeping track of the “current element”
« Consider this example

« On first call, we iterate and find the lowest element (-3)
* On the second call, remembering that our last was -3, we iterate
to find the lowest element again and find (1)

« What happens on later calls?

Either it skips over 1, because it thinks it's done it before, or it
repeats 1 because it doesn’t know how many one’s it has found

S 1 7 9 4 1 8 -3




ITERATORS

 Solutions?

« Sorting the list in advance is still an option

« lterators have a benefit of partial work

« We can to keep track of which elements we have seen

« Must build a collection of returned items within the iterator

« Or we can use a way to indicate that we may still be searching for
duplicates

* Not trivial to implement

 What is the runtime of each call to next? O(N)




SORTING

 What then is the total time to return the complete
set of sorted data?
* N pieces of data at O(N) times
o O(NZ)
* This is one of the slow sorts

* This method is called Selection sort

« We search through the whole list and “select” the
next smallest element




SELECTION SORT

« What are some benefits of this sorting
technique?

Can be interrupted (don’t need to sort the whole
array to get the first element)

Doesn’t need to mutate the original array (if the
array has some other sorted order)

Preserves the other order if it does exist
 This is called a stable sort




SELECTION SORT

« What are some downsides of this sort?

O(N?)
Must look through all elements each time

If done as an iterator, it requires extra memory in
order to implement

If we don’t care about the original array, can we
perform a selection sort without extra memory?

- If a sort only needs a constant amount of memory to
operate, it is called an in-place sort

How do we perform an in-place selection sort?

« Swap the lowest item with the element at the beginning of
the array




SELECTION SORT

« Swapping Selection

We iterate through the list to find the lowest element
When we find it (-3), which do we swap with?
When we go to find the next element, what do we do?

Must search through the entire array, even though the next
element is in the correct place at the start

Which 1 do we select? The first one otherwise the sort is
not stable




NEXT CLASS

« “Cool” graph problems
* New Analysis Trick

« Recurrences




