
CSE 373 
MAY 12TH  – MINIMUM SPANNING TREES 



ASSORTED MINUTIAE 
•  HW5 is out 

•  Write up has a Minimum spanning tree 
question, which we’re covering today 

•  Code due next Wednesday, as usual, Write 
up will be due on Friday.  

•  H2 finally graded 
•  10 or so students no grade yet, out this 

weekend. Problems with the script. 
•  Feedback on HW4 code out this weekend 



TODAY’S LECTURE 
•  Minimum Spanning Trees 

•  Prim’s Algorithm (vertex based solution) 
•  Kruskal’s Algorithm (edge based solution) 



SPANNING TREES 
Given a connected  undirected graph G=(V,E), find a subset of 
edges such that G is still connected 

•  A graph G2=(V,E2) such that G2 is connected and removing any 
edge from E2 makes G2 disconnected 



OBSERVATIONS 
1.  Problem not defined if original graph not connected.  

Therefore, we know |E| >= |V|-1 
 
2.  Any solution to this problem is a tree 

•  Recall a tree does not need a root; just means acyclic 
•  For any cycle, could remove an edge and still be connected 

3.  Solution not unique unless original graph was already a tree 
 
4.  A tree with |V| nodes has |V|-1 edges 

•  So every solution to the spanning tree problem has |V|-1 
edges 
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MOTIVATION 
A spanning tree connects all the nodes with as few edges as possible 
 

 

In most compelling uses, we have a weighted  undirected graph and 
we want a tree of least total cost  
Example: Electrical wiring for a house or clock wires on a chip 

Example: A road network if you cared about asphalt cost rather than 
travel time 
 

This is the minimum spanning tree problem 



LAST CLASS 
Different algorithmic approaches to the spanning-tree 
problem: 
 
1.  Do a graph traversal (e.g., depth-first search, but any 

traversal will do), keeping track of edges that form a tree 

2.  Iterate through edges; add to output any edge that does 
not create a cycle 
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SPANNING TREE VIA TRAVERSAL 
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spanning_tree(Graph G) { 
  for each node v:  
  v.marked = false 
 dfs(someRandomStartNode) 

} 
dfs(Vertex a) {  // recursive DFS 
  a.marked = true 
  for each b adjacent to a: 
   if(!b.marked) { 

      add(a,b) to output 
      dfs(b) 
  } 
} 
   



MINIMAL SPANNING TREES 
•  How do we get a minimal spanning tree 

from a traversal? 
•  What parts of a traversal can we change? 
•  Select which vertex we visit next by which 

is closest to an old vertex 



PRIM’S ALGORITHM 
•  A traversal 

•  Pick a start node 
•  Keep track of all of the vertices you can 

reach 
•  Add the vertex that is closest (has the 

edge with smallest weight) to the current 
spanning tree. 

•  Is this similar to something we’ve seen 
before? 



PRIM’S ALGORITHM 
•  Modify Dijkstra’s algorithm 

•  Instead of measuring the total length from 
start to the new vertex, now we only care 
about the edge from our current spanning 
tree to new nodes 



THE ALGORITHM 
1.  For each node v, set  v.cost = ∞ and v.known = false 
2.  Choose any node v  

a)  Mark v as known 
b)  For each edge (v,u) with weight w, set u.cost=w and u.prev=v 

3.  While there are unknown nodes in the graph 
a)  Select the unknown node v with lowest cost 
b)  Mark v as known and add (v, v.prev) to output 
c)  For each edge (v,u) with weight w, 

      if(w < u.cost) { 
          u.cost = w; 
     u.prev = v; 
      } 
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PRIM’S ALGORITHM 
•  Does this give us the correct solution? 

Why? 
•  If we consider the “known” cloud as a 

single vertex, we will never add edges 
that form a cycle 

•  Each time, we take the edge that has 
minimal weight going out of the vertex.  

•  This is the cheapest way of connecting 
the two subgraphs. 



PRIM’S ALGORITHM 
•  What is the runtime? 

•  Traversals go through all of the edges, in 
the worst case 

•  Need to check if an edge forms a cycle 
or if it has minimal weight. 

•  We can check if it forms a cycle by 
verifying if the other vertex is in the 
“known cloud” O(1) 

•  How long to check if it is minimal?  
O(log |V|) if we use a priority queue 



PRIM’S ALGORITHM 
•  O(|E| log |V|) 

•  We can use a priority queue to store all of 
our vertices, and let the edges to them be the 
priority. 

•  Use the decreaseKey() function when the 
edge to a vertex changes. 

•  This also works for Dijkstra’s algorithm, but 
you aren’t required to do it for HW5 

•  Without the priority queue, both Prim’s and 
Dijkstra’s run in O(|E||V|) 



KRUSKAL’S ALGORITHM 
•  Prim’s algorithm works from the vertices, 

and builds a contiguous spanning tree 
•  The spanning tree grows out from a single 

vertex 
•  Kruskal’s Algorithm adds edges based on 

their weight 
•  Must check for cycles  
•  Use the union-find data structure to speed up 

this operation 



KRUSKAL’S ALGORITHM 
•  Pseudocode: 

•  Sort the edges (or place them into a heap) 
•  Create a union-find data structure with all 

separate vertices 
•  For each edge, add it to the minimum 

spanning tree if the two vertices don’t have 
the same representative in the union find 

•  Union the two vertices in the union find 
•  Stop after you’ve added |V|-1 edges 
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: 

Note: At each step, the union/find sets are the trees in the forest 
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D) 

Note: At each step, the union/find sets are the trees in the forest 
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D) 

Note: At each step, the union/find sets are the trees in the forest 
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E) 

Note: At each step, the union/find sets are the trees in the forest 
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E) 

Note: At each step, the union/find sets are the trees in the forest 



EXAMPLE  
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E) 

Note: At each step, the union/find sets are the trees in the forest 
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F) 

Note: At each step, the union/find sets are the trees in the forest 
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Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F) 

Note: At each step, the union/find sets are the trees in the forest 



EXAMPLE  
A B 

C 
D 

F 

E 

G 

2 

1 
2 5 

1 
1 

1 

2 6 
5 3 

10 

Edges in sorted order: 
1:  (A,D), (C,D), (B,E), (D,E) 
2:  (A,B), (C,F), (A,C) 
3:  (E,G) 
5:  (D,G), (B,D) 
6:  (D,F) 
10: (F,G) 

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G) 

Note: At each step, the union/find sets are the trees in the forest 



KRUSKAL’S ALGORITHM 
•  Runtime 

•  Put edges into a heap O(|E|) Floyd’s method! 
•  Until the MST is complete: 

•  Pull the minimum edge out of the heap  
O(log |E|) 

•  Check if it forms a cycle O(log |V|) 
•  How many times does the loop run? O(E) 
•  O(|E| log |E|) 



COMPARISONS 
•  Prim’s  

•  O(|E| log |V|) 
•  Kruskal’s 

•  O(|E| log |E|) 
•  Since |E| must be at least |V|-1 for the graph 

to be connected, which do we prefer? 



COMPARISONS 
•  Prim’s  

•  O(|E| log |V|) 
•  Kruskal’s 

•  O(|E| log |E|) 
•  Since |E| must be at least |V|-1 for the graph 

to be connected, which do we prefer? 
•  Since |E| is at most |V|2, log|E| is at most 

log(|V|2) which is 2log|V|.  
•  So log|E| is O(log|V|)  



CONCLUSIONS 
•  Prim’s and Kruskal’s both run in  

O(|E| log |V|) 
•  An undirected graph has a unique 

minimum spanning tree if all of its edge 
weights are unique. 

•  If graphs have multiple edges of the same 
weight, it is possible (but not necessary) 
that there are many spanning trees of the 
same weight 



NEXT WEEK 
•  Graph algorithm runtimes 
•  Conclude Graphs 
•  New Algorithm Analysis technique  

•  Recurrences 
•  Start sorting 
 

 


