
CSE 373
MAY 12TH – MINIMUM SPANNING TREES

ASSORTED MINUTIAE
•  HW5 is out

•  Write up has a Minimum spanning tree
question, which we’re covering today

•  Code due next Wednesday, as usual, Write
up will be due on Friday.

•  H2 finally graded
•  10 or so students no grade yet, out this

weekend. Problems with the script.
•  Feedback on HW4 code out this weekend

TODAY’S LECTURE
•  Minimum Spanning Trees

•  Prim’s Algorithm (vertex based solution)
•  Kruskal’s Algorithm (edge based solution)

SPANNING TREES
Given a connected undirected graph G=(V,E), find a subset of
edges such that G is still connected

•  A graph G2=(V,E2) such that G2 is connected and removing any
edge from E2 makes G2 disconnected

OBSERVATIONS
1.  Problem not defined if original graph not connected.

Therefore, we know |E| >= |V|-1

2.  Any solution to this problem is a tree

•  Recall a tree does not need a root; just means acyclic
•  For any cycle, could remove an edge and still be connected

3.  Solution not unique unless original graph was already a tree

4.  A tree with |V| nodes has |V|-1 edges

•  So every solution to the spanning tree problem has |V|-1
edges

5

MOTIVATION
A spanning tree connects all the nodes with as few edges as possible

In most compelling uses, we have a weighted undirected graph and
we want a tree of least total cost
Example: Electrical wiring for a house or clock wires on a chip

Example: A road network if you cared about asphalt cost rather than
travel time

This is the minimum spanning tree problem

LAST CLASS
Different algorithmic approaches to the spanning-tree
problem:

1.  Do a graph traversal (e.g., depth-first search, but any

traversal will do), keeping track of edges that form a tree

2.  Iterate through edges; add to output any edge that does
not create a cycle

7

SPANNING TREE VIA TRAVERSAL

8

spanning_tree(Graph G) {
 for each node v:
 v.marked = false
 dfs(someRandomStartNode)

}
dfs(Vertex a) { // recursive DFS
 a.marked = true
 for each b adjacent to a:
 if(!b.marked) {

 add(a,b) to output
 dfs(b)
 }
}

MINIMAL SPANNING TREES
•  How do we get a minimal spanning tree

from a traversal?
•  What parts of a traversal can we change?
•  Select which vertex we visit next by which

is closest to an old vertex

PRIM’S ALGORITHM
•  A traversal

•  Pick a start node
•  Keep track of all of the vertices you can

reach
•  Add the vertex that is closest (has the

edge with smallest weight) to the current
spanning tree.

•  Is this similar to something we’ve seen
before?

PRIM’S ALGORITHM
•  Modify Dijkstra’s algorithm

•  Instead of measuring the total length from
start to the new vertex, now we only care
about the edge from our current spanning
tree to new nodes

THE ALGORITHM
1.  For each node v, set v.cost = ∞ and v.known = false
2.  Choose any node v

a)  Mark v as known
b)  For each edge (v,u) with weight w, set u.cost=w and u.prev=v

3.  While there are unknown nodes in the graph
a)  Select the unknown node v with lowest cost
b)  Mark v as known and add (v, v.prev) to output
c)  For each edge (v,u) with weight w,

 if(w < u.cost) {
 u.cost = w;
 u.prev = v;
 }

EXAMPLE

A B

C
D

F

E

G

∞

∞

∞

∞

∞

∞

2

1
2

vertex known? cost prev
A ∞
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

5

1
1

1

2 6
5 3

10

∞

14

A B

C
D

F

E

G

0 2

∞

2

1
∞

∞

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C 2 A
D 1 A
E ∞
F ∞
G ∞

5

1
1

1

2 6
5 3

10

15

A B

C
D

F

E

G

0 2

6

2

1
1

5

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C 1 D
D Y 1 A
E 1 D
F 6 D
G 5 D

5

1
1

1

2 6
5 3

10

A B

C
D

F

E

G

0 2

2

2

1
1

5

2

1
2

vertex known? cost prev
A Y 0
B 2 A
C Y 1 D
D Y 1 A
E 1 D
F 2 C
G 5 D

5

1
1

1

2 6
5 3

10

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

5

1
1

1

2 6
5 3

10

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F 2 C
G 3 E

5

1
1

1

2 6
5 3

10

19

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G 3 E

5

1
1

1

2 6
5 3

10

A B

C
D

F

E

G

0 1

2

2

1
1

3

2

1
2

vertex known? cost prev
A Y 0
B Y 1 E
C Y 1 D
D Y 1 A
E Y 1 D
F Y 2 C
G Y 3 E

5

1
1

1

2 6
5 3

10

PRIM’S ALGORITHM
•  Does this give us the correct solution?

Why?
•  If we consider the “known” cloud as a

single vertex, we will never add edges
that form a cycle

•  Each time, we take the edge that has
minimal weight going out of the vertex.

•  This is the cheapest way of connecting
the two subgraphs.

PRIM’S ALGORITHM
•  What is the runtime?

•  Traversals go through all of the edges, in
the worst case

•  Need to check if an edge forms a cycle
or if it has minimal weight.

•  We can check if it forms a cycle by
verifying if the other vertex is in the
“known cloud” O(1)

•  How long to check if it is minimal?
O(log |V|) if we use a priority queue

PRIM’S ALGORITHM
•  O(|E| log |V|)

•  We can use a priority queue to store all of
our vertices, and let the edges to them be the
priority.

•  Use the decreaseKey() function when the
edge to a vertex changes.

•  This also works for Dijkstra’s algorithm, but
you aren’t required to do it for HW5

•  Without the priority queue, both Prim’s and
Dijkstra’s run in O(|E||V|)

KRUSKAL’S ALGORITHM
•  Prim’s algorithm works from the vertices,

and builds a contiguous spanning tree
•  The spanning tree grows out from a single

vertex
•  Kruskal’s Algorithm adds edges based on

their weight
•  Must check for cycles
•  Use the union-find data structure to speed up

this operation

KRUSKAL’S ALGORITHM
•  Pseudocode:

•  Sort the edges (or place them into a heap)
•  Create a union-find data structure with all

separate vertices
•  For each edge, add it to the minimum

spanning tree if the two vertices don’t have
the same representative in the union find

•  Union the two vertices in the union find
•  Stop after you’ve added |V|-1 edges

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest

EXAMPLE
A B

C
D

F

E

G

2

1
2 5

1
1

1

2 6
5 3

10

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest

KRUSKAL’S ALGORITHM
•  Runtime

•  Put edges into a heap O(|E|) Floyd’s method!
•  Until the MST is complete:

•  Pull the minimum edge out of the heap
O(log |E|)

•  Check if it forms a cycle O(log |V|)
•  How many times does the loop run? O(E)
•  O(|E| log |E|)

COMPARISONS
•  Prim’s

•  O(|E| log |V|)
•  Kruskal’s

•  O(|E| log |E|)
•  Since |E| must be at least |V|-1 for the graph

to be connected, which do we prefer?

COMPARISONS
•  Prim’s

•  O(|E| log |V|)
•  Kruskal’s

•  O(|E| log |E|)
•  Since |E| must be at least |V|-1 for the graph

to be connected, which do we prefer?
•  Since |E| is at most |V|2, log|E| is at most

log(|V|2) which is 2log|V|.
•  So log|E| is O(log|V|)

CONCLUSIONS
•  Prim’s and Kruskal’s both run in

O(|E| log |V|)
•  An undirected graph has a unique

minimum spanning tree if all of its edge
weights are unique.

•  If graphs have multiple edges of the same
weight, it is possible (but not necessary)
that there are many spanning trees of the
same weight

NEXT WEEK
•  Graph algorithm runtimes
•  Conclude Graphs
•  New Algorithm Analysis technique

•  Recurrences
•  Start sorting

