CSE 373

MAY 12TH – MINIMUM SPANNING TREES

ASSORTED MINUTIAE

HW5 is out

- Write up has a Minimum spanning tree question, which we're covering today
- Code due next Wednesday, as usual, Write up will be due on Friday.
- H2 finally graded
 - 10 or so students no grade yet, out this weekend. Problems with the script.
- Feedback on HW4 code out this weekend

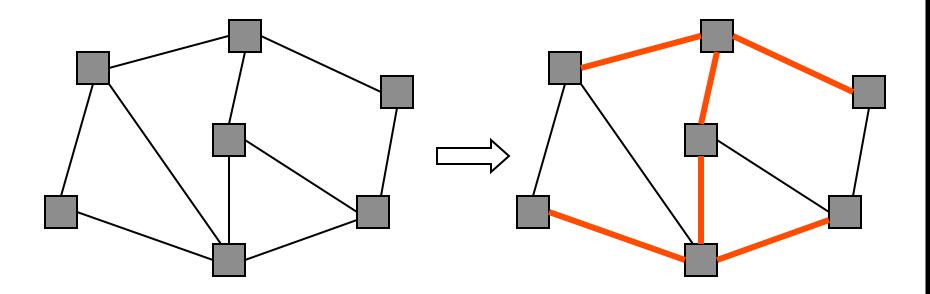
TODAY'S LECTURE

- Minimum Spanning Trees
 - Prim's Algorithm (vertex based solution)
 - Kruskal's Algorithm (edge based solution)

SPANNING TREES

Given a *connected* undirected graph G=(V,E), find a subset of edges such that G is still connected

 A graph G2=(V,E2) such that G2 is connected and removing any edge from E2 makes G2 disconnected



OBSERVATIONS

 Problem not defined if original graph not connected. Therefore, we know |E| >= |V|-1

2. Any solution to this problem is a tree

- Recall a tree does not need a root; just means acyclic
- For any cycle, could remove an edge and still be connected
- 3. Solution not unique unless original graph was already a tree
- 4. A tree with |V| nodes has |V|-1 edges
 - So every solution to the spanning tree problem has |V|-1 edges

MOTIVATION

A spanning tree connects all the nodes with as few edges as possible

In most compelling uses, we have a *weighted* undirected graph and we want a tree of least total cost

Example: Electrical wiring for a house or clock wires on a chip

Example: A road network if you cared about asphalt cost rather than travel time

This is the minimum spanning tree problem

Different algorithmic approaches to the spanning-tree problem:

- 1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree
- 2. Iterate through edges; add to output any edge that does not create a cycle

SPANNING TREE VIA TRAVERSAL

```
spanning tree(Graph G) {
  for each node v:
      v.marked = false
  dfs(someRandomStartNode)
dfs(Vertex a) { // recursive DFS
  a.marked = true
  for each b adjacent to a:
    if(!b.marked) {
      add(a,b) to output
      dfs(b)
```

MINIMAL SPANNING TREES

- How do we get a minimal spanning tree from a traversal?
 - What parts of a traversal can we change?
 - Select which vertex we visit next by which is closest to an old vertex

A traversal

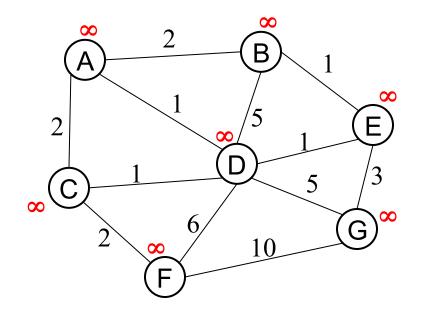
- Pick a start node
- Keep track of all of the vertices you can reach
- Add the vertex that is closest (has the edge with smallest weight) to the current spanning tree.
- Is this similar to something we've seen before?

- Modify Dijkstra's algorithm
 - Instead of measuring the total length from start to the new vertex, now we only care about the edge from our current spanning tree to new nodes

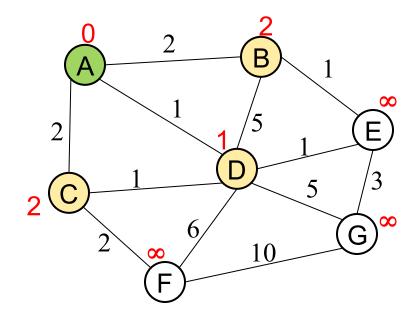
THE ALGORITHM

- 1. For each node v, set v.cost = ∞ and v.known = false
- 2. Choose any node v
 - a) Mark v as known
 - b) For each edge (v,u) with weight w, set u.cost=w and u.prev=v
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node **v** with lowest cost
 - b) Mark v as known and add (v, v.prev) to output
 - c) For each edge (v,u) with weight w,

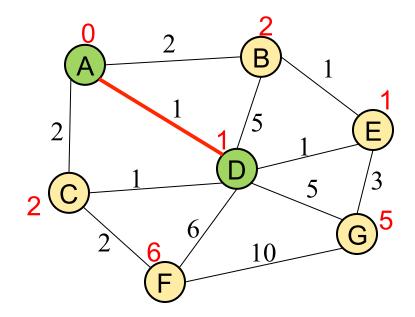
```
if(w < u.cost) {
    u.cost = w;
u.prev = v;
}</pre>
```

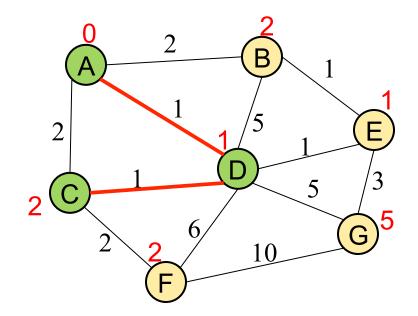
vertex	known?	cost	prev
А		8	
В		8	
С		8	
D		8	
E		8	
F		8	
G		8	



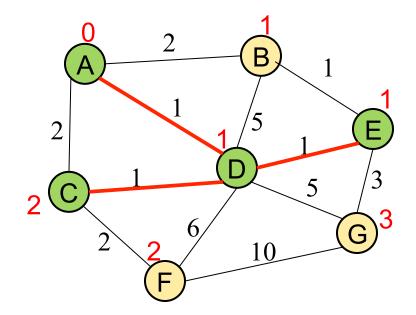
vertex	known?	cost	prev
А	Y	0	
В		2	А
С		2	А
D		1	А
E		8	
F		8	
G		8	



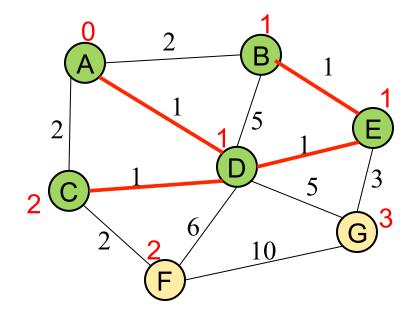
vertex	known?	cost	prev
А	Y	0	
В		2	А
С		1	D
D	Y	1	А
E		1	D
F		6	D
G		5	D



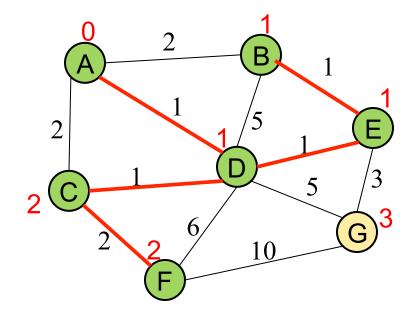
vertex	known?	cost	prev
А	Y	0	
В		2	А
С	Y	1	D
D	Y	1	А
E		1	D
F		2	С
G		5	D



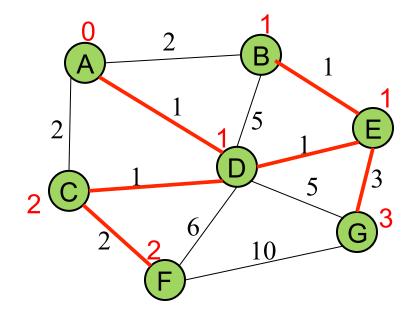
vertex	known?	cost	prev
А	Y	0	
В		1	Е
С	Y	1	D
D	Y	1	А
E	Y	1	D
F		2	С
G		3	E



vertex	known?	cost	prev
А	Y	0	
В	Y	1	E
С	Y	1	D
D	Y	1	А
E	Y	1	D
F		2	С
G		3	E



vertex	known?	cost	prev
А	Y	0	
В	Y	1	Е
С	Y	1	D
D	Y	1	А
E	Y	1	D
F	Y	2	С
G		3	E



vertex	known?	cost	prev
А	Y	0	
В	Y	1	E
С	Y	1	D
D	Y	1	А
E	Y	1	D
F	Y	2	С
G	Y	3	E

- Does this give us the correct solution? Why?
 - If we consider the "known" cloud as a single vertex, we will never add edges that form a cycle
 - Each time, we take the edge that has minimal weight going out of the vertex.
 - This is the cheapest way of connecting the two subgraphs.

- What is the runtime?
 - Traversals go through all of the edges, in the worst case
 - Need to check if an edge forms a cycle or if it has minimal weight.
 - We can check if it forms a cycle by verifying if the other vertex is in the "known cloud" O(1)
 - How long to check if it is minimal?
 O(log |V|) if we use a priority queue

• O(|E| log |V|)

- We can use a priority queue to store all of our vertices, and let the edges to them be the priority.
- Use the decreaseKey() function when the edge to a vertex changes.
- This also works for Dijkstra's algorithm, but you aren't required to do it for HW5
- Without the priority queue, both Prim's and Dijkstra's run in O(|E||V|)

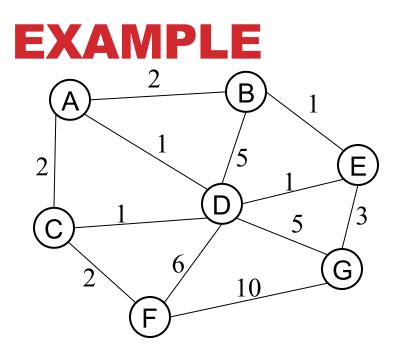
KRUSKAL'S ALGORITHM

- Prim's algorithm works from the vertices, and builds a contiguous spanning tree
 - The spanning tree grows out from a single vertex
- Kruskal's Algorithm adds edges based on their weight
 - Must check for cycles
 - Use the union-find data structure to speed up this operation

KRUSKAL'S ALGORITHM

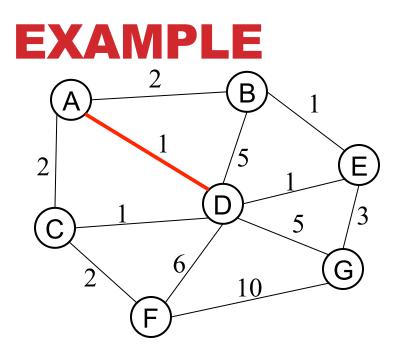
Pseudocode:

- Sort the edges (or place them into a heap)
- Create a union-find data structure with all separate vertices
- For each edge, add it to the minimum spanning tree if the two vertices don't have the same representative in the union find
- Union the two vertices in the union find
- Stop after you've added |V|-1 edges



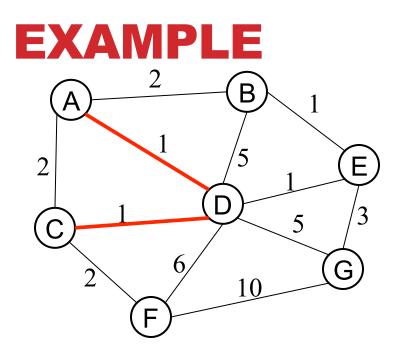
- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output:



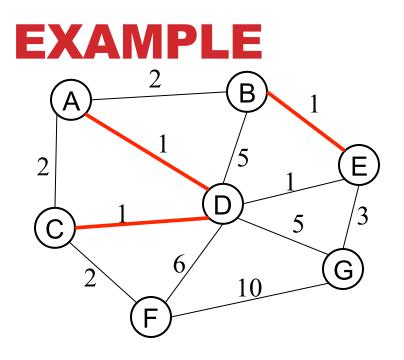
- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D)



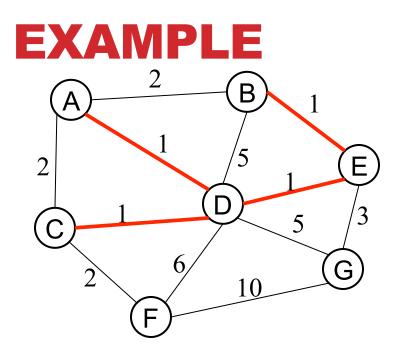
- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D)



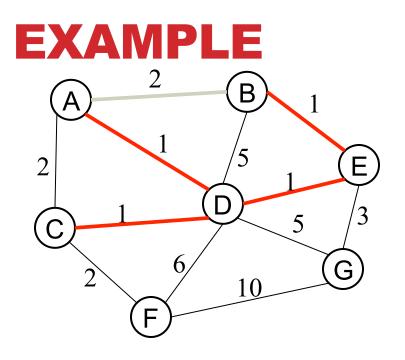
- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E)



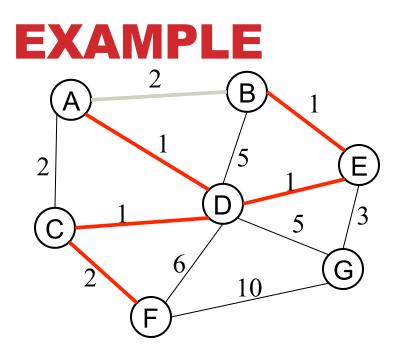
- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)



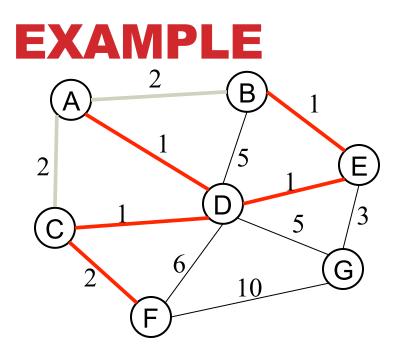
- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)



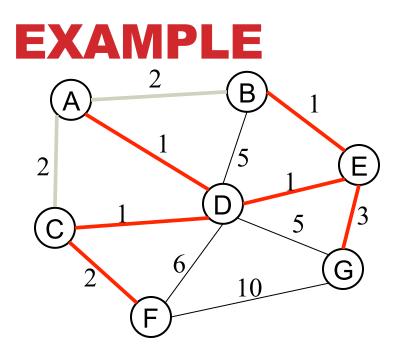
- 1: (A,D), (C,D), (B,E), (D,E)
- 2: (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)



- 1: (A,D), (C,D), (B,E), (D,E)
- **2:** (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)



- 1: (A,D), (C,D), (B,E), (D,E)
- **2:** (A,B), (C,F), (A,C)
- 3: (E,G)
- 5: (D,G), (B,D)
- 6: (D,F)
- 10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

KRUSKAL'S ALGORITHM

Runtime

- Put edges into a heap **O(|E|)** Floyd's method!
- Until the MST is complete:
 - Pull the minimum edge out of the heap
 O(log |E|)
 - Check if it forms a cycle O(log |V|)
- How many times does the loop run? O(E)
- O(|E| log |E|)

COMPARISONS

- Prim's
 - O(|E| log |V|)
- Kruskal's
 - O(|E| log |E|)
- Since |E| must be at least |V|-1 for the graph to be connected, which do we prefer?

COMPARISONS

- Prim's
 - O(|E| log |V|)
- Kruskal's
 - O(|E| log |E|)
- Since |E| must be at least |V|-1 for the graph to be connected, which do we prefer?
 - Since |E| is at most |V|², log|E| is at most log(|V|²) which is 2log|V|.
 - So log|E| is O(log|V|)

CONCLUSIONS

- Prim's and Kruskal's both run in O(|E| log |V|)
- An undirected graph has a unique minimum spanning tree if all of its edge weights are unique.
- If graphs have multiple edges of the same weight, it is possible (but not necessary) that there are many spanning trees of the same weight

NEXT WEEK

- Graph algorithm runtimes
- Conclude Graphs
- New Algorithm Analysis technique
 - Recurrences
- Start sorting