
CSE 373
MAY 10TH – SPANNING TREES AND
UNION FIND

COURSE LOGISTICS
•  HW4 due tonight, if you want feedback by

the weekend

COURSE LOGISTICS
•  HW4 due tonight, if you want feedback by

the weekend
•  HW5 out tomorrow morning

COURSE LOGISTICS
•  HW4 due tonight, if you want feedback by

the weekend
•  HW5 out tomorrow morning

•  Dijsktra’s algorithm

TODAY’S LECTURE
•  Spanning Trees

TODAY’S LECTURE
•  Spanning Trees
•  Union-find Data Structure

PROBLEM STATEMENT
Given a connected undirected graph G=(V,E), find a minimal
subset of edges such that G is still connected

•  A graph G2=(V,E2) such that G2 is connected and removing any
edge from E2 makes G2 disconnected

OBSERVATIONS
1.  Problem not defined if original graph not connected.

Therefore, we know |E| >= |V|-1

8

OBSERVATIONS
1.  Problem not defined if original graph not connected.

Therefore, we know |E| >= |V|-1

2.  Any solution to this problem is a tree

•  Recall a tree does not need a root; just means acyclic
•  For any cycle, could remove an edge and still be

connected

9

OBSERVATIONS
1.  Problem not defined if original graph not connected.

Therefore, we know |E| >= |V|-1

2.  Any solution to this problem is a tree

•  Recall a tree does not need a root; just means acyclic
•  For any cycle, could remove an edge and still be

connected

3.  Solution not unique unless original graph was already a
tree

10

OBSERVATIONS
1.  Problem not defined if original graph not connected.

Therefore, we know |E| >= |V|-1

2.  Any solution to this problem is a tree

•  Recall a tree does not need a root; just means acyclic
•  For any cycle, could remove an edge and still be connected

3.  Solution not unique unless original graph was already a tree

4.  A tree with |V| nodes has |V|-1 edges

•  So every solution to the spanning tree problem has |V|-1
edges

11

MOTIVATION
A spanning tree connects all the nodes with as few edges as possible

In most compelling uses, we have a weighted undirected graph and
we want a tree of least total cost
Example: Electrical wiring for a house or clock wires on a chip

Example: A road network if you cared about asphalt cost rather than
travel time

This is the minimum spanning tree problem

•  Will do that next, after intuition from the simpler case

TWO APPROACHES
Different algorithmic approaches to the spanning-tree
problem:

13

TWO APPROACHES
Different algorithmic approaches to the spanning-tree
problem:

1.  Do a graph traversal (e.g., depth-first search, but any

traversal will do), keeping track of edges that form a tree

14

TWO APPROACHES
Different algorithmic approaches to the spanning-tree
problem:

1.  Do a graph traversal (e.g., depth-first search, but any

traversal will do), keeping track of edges that form a tree

2.  Iterate through edges; add to output any edge that does
not create a cycle

15

SPANNING TREE VIA DFS

16

spanning_tree(Graph G) {
 for each node v:
 v.marked = false
 dfs(someRandomStartNode)

}
dfs(Vertex a) { // recursive DFS
 a.marked = true
 for each b adjacent to a:
 if(!b.marked) {

 add(a,b) to output
 dfs(b)
 }
}

Correctness: DFS reaches each node in connected graph.
We add one edge to connect it to the already visited nodes.
Order affects result, not correctness. Runtime: O(|E|)

EXAMPLE
dfs(1)

1
2

3

4

5

6

7

Output:

EXAMPLE
dfs(1)

Pending

Callstack:

dfs(2)

dfs(5)

dfs(6)

1
2

3

4

5

6

7

Output:

EXAMPLE

19

1
2

3

4

5

6

7

Output: (1,2)

dfs(2)

Pending
Callstack:

dfs(7)
dfs(3)
dfs(5)
dfs(6)

EXAMPLE
dfs(7)

Pending
Callstack:

dfs(5)
dfs(4)
dfs(3)
dfs(5)
dfs(6)

1
2

3

4

5

6

7

Output: (1,2), (2,7)

EXAMPLE
dfs(5)

Pending
Callstack:

dfs(4)
dfs(6)
dfs(4)
dfs(3)
dfs(6)

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5)

EXAMPLE
dfs(4)

Pending

Callstack:

dfs(3)

dfs(6)

dfs(3)

22

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4)

EXAMPLE
dfs(3)

Pending

Callstack:

dfs(6)

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4), (4,3)

EXAMPLE
dfs(6)

Pending

Callstack:

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

EXAMPLE

1
2

3

4

5

6

7

Output: (1,2), (2,7), (7,5), (5,4), (4,3), (5,6)

SECOND APPROACH
Iterate through edges; output any edge that does not create a
cycle

Correctness (hand-wavy):

•  Goal is to build an acyclic connected graph
•  When we add an edge, it adds a vertex to the tree
•  The graph is connected, so we reach all vertices

Efficiency:

•  Depends on how quickly you can detect cycles
•  Reconsider after the example

EXAMPLE
Edges in some arbitrary order:

 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3),
(4,5), (4,7)

1
2

3

4

5

6

7

Output:

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

1
2

3

4

5

6

7

Output: (1,2)

EXAMPLE

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

1
2

3

4

5

6

7

Output: (1,2), (3,4)

EXAMPLE

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

30

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6),

EXAMPLE

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7)

EXAMPLE

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

32

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

EXAMPLE

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

EXAMPLE

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5)

EXAMPLE

Edges in some arbitrary order:
 (1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

1
2

3

4

5

6

7

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Can stop once we
have |V|-1 edges

EXAMPLE

CYCLE DETECTION
To decide if an edge could form a cycle is O(|V|) because we
may need to traverse all edges already in the output

So overall algorithm would be O(|V||E|)

But there is a faster way: union-find!

•  Data structure which stores connected sub-graphs
•  As we add more edges to the spanning tree, those sub-

graphs are joined

DISJOINT SETS AND
UNION FIND
What are sets and disjoint sets

The union-find ADT for disjoint sets

Basic implementation with "up trees"

Optimizations that make the implementation much faster

37

TERMINOLOGY

Intersection ∩ Union ∪

Empty set: ∅

Set S containing e1, e2 and e3: {e1, e2, el3}
e1 is an element of S: e1 ∈ S

Notation for elements in a set:

DISJOINT SETS
A set is a collection of elements (no-repeats)
Every set contains the empty set by default
Two sets are disjoint if they have no elements in common

•  S1 ∩ S2 = ∅

Examples:

•  {a, e, c} and {d, b}
•  {x, y, z} and {t, u, x}

39

Disjoint
Not disjoint

PARTITIONS
A partition P of a set S is a set of sets {S1,S2,…,Sn} such that
every element of S is in exactly one Si

Put another way:
•  S1 ∪ S2 ∪ . . . ∪ Sk = S
•  For all i and j, i ≠ j implies Si ∩ Sj = ∅ (sets are disjoint with

each other)

Example: Let S be {a,b,c,d,e}
•  {a}, {d,e}, {b,c}
•  {a,b,c}, ∅, {d}, {e}
•  {a,b,c,d,e}
•  {a,b,d}, {c,d,e}
•  {a,b}, {e,c}

Partition
Partition
Partition

Not a partition, not disjoint, both sets have d
Not a partition of S (doesn’t have d)

UNION FIND ADT:
OPERATIONS
Given an unchanging set S, create an initial partition of a set

•  Typically each item in its own subset: {a}, {b}, {c}, …
•  Give each subset a "name" by choosing a representative

element

Operation find takes an element of S and returns the
representative element of the subset it is in

Operation union takes two subsets and (permanently) makes
one larger subset

•  A different partition with one fewer set
•  Affects result of subsequent find operations
•  Choice of representative element up to implementation

EXAMPLE
Let S = {1,2,3,4,5,6,7,8,9}

Let initial partition be (will highlight representative elements red)
{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}

union(2,5):
{1}, {2, 5}, {3}, {4}, {6}, {7}, {8}, {9}

find(4) = 4, find(2) = 2, find(5) = 2
union(4,6), union(2,7)

{1}, {2, 5, 7}, {3}, {4, 6}, {8}, {9}
find(4) = 6, find(2) = 2, find(5) = 2
union(2,6)

{1}, {2, 4, 5, 6, 7}, {3}, {8}, {9}

NO OTHER
OPERATIONS
All that can "happen" is sets get unioned

•  No "un-union" or "create new set" or …

As always: trade-offs – implementations are different

•  ideas? How do we maintain “representative” of a subset?

Surprisingly useful ADT, but not as common as dictionaries,
priority queues / heaps, AVL trees or hashing

EXAMPLE APPLICATION:
MAZE-BUILDING

Build a random maze by erasing edges

Criteria:
•  Possible to get from anywhere to anywhere
•  No loops possible without backtracking

•  After a "bad turn" have to "undo"

MAZE BUILDING
Pick start edge and end edge

45

Start

End

REPEATEDLY PICK RANDOM
EDGES TO DELETE
One approach: just keep deleting random edges until you
can get from start to finish

46

Start

End

PROBLEMS WITH THIS
APPROACH
1.  How can you tell when there is a path from start

to finish?
•  We do not really have an algorithm yet (Graphs)

2.  We have cycles, which a "good" maze avoids
3.  We can’t get from anywhere to anywhere else

Start

End

REVISED APPROACH
Consider edges in random order

But only delete them if they introduce no cycles (how? TBD)

When done, will have one way to get from any place to any other place (assuming no
backtracking)

Notice the funny-looking tree in red

48

Start

End

CELLS AND EDGES
Let’s number each cell

•  36 total for 6 x 6
An (internal) edge (x,y) is the line between cells x and y

•  60 total for 6x6: (1,2), (2,3), …, (1,7), (2,8), …

Start

End

1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

THE TRICK
Partition the cells into disjoint sets: "are they connected"

•  Initially every cell is in its own subset
If an edge would connect two different subsets:

•  then remove the edge and union the subsets
•  else leave the edge because removing it makes a cycle

Start

End

1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

IMPLEMENTATION?
How do you store a subset?
How do you know what the “representative” is?
How do you implement union?

How do you pick a new “representative”?

What is the cost of find? Of union? Of create?

IMPLEMENTATION
Start with an initial partition of n subsets

•  Often 1-element sets, e.g., {1}, {2}, {3}, …, {n}

May have m find operations and up to n-1 union operations
in any order

•  After n-1 union operations, every find returns same 1 set

If total for all these operations is O(m+n), then average over
the runs is O(1)

•  We will get very, very close to this
•  O(1) worst-case is impossible for find and union

•  Trivial for one or the other

UP-TREE DATA
STRUCTURE
Tree with any number of children at each node

•  References from children to parent (each child knows who it’s parent
is)

Start with forest (collection of trees) of 1-node trees

Possible forest after several unions:
•  Will use overall roots for the

 representative element

1 2 3 4 5 6 7

1

2

3

4 5

6

7

FIND
find(x): (backwards from the tree traversals we’ve been
doing for find so far)

•  Assume we have O(1) access to each node
•  Start at x and follow parent pointers to root
• Return the root

1

2

3

4 5

6

7
find(6) = 7

UNION
union(x,y):

• Find the roots of x and y
•  if distinct trees, we merge, if the same tree, do

nothing
• Change root of one to have parent be the root of the

other

1

2

3

4 5

6

7
union(1,7)

REPRESENTATION
Important to remember from the operations:

•  We assume O(1) access to each node
•  Ideally, we want the traversal from leaf to root of each tree to

be as short as possible (the find operation depends on this
traversal)

•  We don’t want to copy a bunch of nodes to a new tree on
each union, we only want to modify one pointer (or a small
constant number of them)

SIMPLE IMPLEMENTATION
If set elements are contiguous numbers (e.g., 1,2,…,n), use an
array of length n called up

•  Starting at index 1 on slides
•  Put in array index of parent, with 0 (or -1, etc.) for a root

Example:

If set elements are not contiguous numbers, could have a separate dictionary hash map
to map elements (keys) to numbers (values)

1

2

3

4 5

6

7 0 1 0 7 7 5 0
1 2 3 4 5 6 7

up

1 2 3 4 5 6 7 0 0 0 0 0 0 0
1 2 3 4 5 6 7

up

IMPLEMENT OPERATIONS

Worst-case run-time for union?

Worst-case run-time for find?

Worst-case run-time for m finds and n-1 unions?

// assumes x in range 1,n
int find(int x) {
 while(up[x] != 0) {

 x = up[x];
 }
 return x;
}

// assumes x,y are roots
void union(int x, int y){
 // y = find(y)
 // x = find(x)
 up[y] = x;

}

IMPLEMENT OPERATIONS

Worst-case run-time for union?

Worst-case run-time for find?

Worst-case run-time for m finds and n-1 unions?

59

// assumes x in range 1,n
int find(int x) {
 while(up[x] != 0) {

 x = up[x];
 }
 return x;
}

// assumes x,y are roots
void union(int x, int y){
 // y = find(y)
 // x = find(x)
 up[y] = x;

}

 O(1)

 O(n)

O(m*n)

THE BAD CASE TO
AVOID

1 2 3 n …

1

2 3 n

union(2,1)

1

2

3 n

union(3,2)

union(n,n-1)

…

…

1

2

3

n

:
.

find(1) n steps!!

WEIGHTED UNION
Weighted union:

•  Always point the smaller (total # of nodes) tree to the root of
the larger tree

1

2

3

4 5

6

7

union(1,7)

2 4 1

WEIGHTED UNION
Weighted union:

•  Always point the smaller (total # of nodes) tree to the root of
the larger tree

•  What just happened to the height of the larger tree?

1

2

3

4 5

6

7
union(1,7)

6 1

WEIGHTED UNION
Weighted union:

•  Like balancing on an AVL tree, we’re trying to keep the
traversal from leaf to overall root short

1

2

3

4 5

6

7 union(1,7)
6 1

ARRAY
IMPLEMENTATION
Keep the weight (number of nodes in a second array). Or
have one array of objects with two fields. Could keep track
of height, but that’s harder. Weight gives us an
approximation.

1

2

3 2 1
0
2

1 0
1

7 7 5 0
4

1 2 3 4 5 6 7
parent
weight

4 5

6

7 4

1

2

3 1 7
2

1 0
1

7 7 5 0
6

parent
weight 4 5

6

7 6 1 2 3 4 5 6 7

NIFTY TRICK
Actually we do not need a second array…

•  Instead of storing 0 for a root, store negation of weight. So parent
value < 0 means a root.

1

2

3 2 1
-2 1 -1 7 7 5 -4
1 2 3 4 5 6 7

parent
or weight

4 5

6

7 4

1

2

3 1
4 5

6

7 6
1 2 3 4 5 6 7
7 1 -1 7 7 5 -6 parent

or weight

INTUITION: THE KEY
IDEA
Intuition behind the proof: No one child can have more than half
the nodes

So, as usual, if number of nodes is exponential in height,
then height is logarithmic in number of nodes. The height is
log(N) where N is the number of nodes.

So find is O(log n)

66

h
T1

T

THE NEW WORST
CASE FIND

After n/2 + n/4 + …+ 1 Weighted Unions:

Worst
find Height grows by 1 a total of log n times

log n

PATH COMPRESSION
Simple idea: As part of a find, change each
encountered node’s parent to point directly to root

•  Faster future finds for everything on the path (and their
descendants)

1

2

3

4 5

6

7

find(3)

8 9

10

1

2 3 4 5 6

7

8 9 10

11 12

11 12

NEXT CLASS
•  Minimal Spanning Tree

•  Prim’s and Kruskal’s Algorithms

NEXT CLASS
•  Minimal Spanning Tree

•  Prim’s and Kruskal’s Algorithms
•  Analyzing Graph algorithms for runtime and

memory

