CSE 373

MAY 8TH - DIJKSTRAS

GRAPHS REVIEW

- What is some of the terminology for graphs and what do those terms mean?
 - Vertices and Edges
 - Directed v. Undirected
 - In-degree and out-degree
 - Connected
 - Weighted v. unweighted
 - Cyclic v. acyclic
 - DAG: Directed Acyclic Graph

TRAVERSALS

- For an arbitrary graph and starting node v, find all nodes reachable from v.
 - There exists a path from v
 - Doing something or "processing" each node
 - Determines if an undirected graph is connected?
 If a traversal goes through all vertices, then it is connected
- Basic idea
 - Traverse through the nodes like a tree
 - Mark the nodes as visited to prevent cycles and from processing the same node twice

ABSTRACT IDEA IN PSEUDOCODE

```
void traverseGraph(Node start) {
     Set pending = emptySet()
     pending.add(start)
     mark start as visited
     while(pending is not empty) {
       next = pending.remove()
       for each node u adjacent to next
          if (u is not marked visited) {
             mark u
             pending.add(u)
```

RUNTIME AND OPTIONS

- Assuming we can add and remove from our "pending" DS in O(1) time, the entire traversal is O(|E|)
- Our traversal order depends on what we use for our pending DS.

Stack : DFS

Queue: BFS

 These are the main traversal techniques in CS, but there are others!

EXAMPLE: TREES

A tree is a graph and make DFS and BFS are easier to "see"


```
DFS(Node start) {
   mark and process start
   for each node u adjacent to start
    if u is not marked
       DFS(u)
}
```

- A, B, D, E, C, F, G, H
- Exactly what we called a "pre-order traversal" for trees
 - The marking is because we support arbitrary graphs and we want to process each node exactly once

EXAMPLE: TREES


```
DFS2(Node start) {
  initialize stack s to hold start
  mark start as visited
  while(s is not empty) {
    next = s.pop() // and "process"
    for each node u adjacent to next
      if(u is not marked)
      mark u and push onto s
  }
}
```

- A, C, F, H, G, B, E, D
- A different but perfectly fine depth traversal

COMPARISON

Breadth-first always finds shortest length paths, i.e., "optimal solutions"

Better for "what is the shortest path from x to y"

But depth-first can use less space in finding a path

- If longest path in the graph is p and highest out-degree is d then DFS stack never has more than d*p elements
- But a queue for BFS may hold O(|V|) nodes

A third approach (useful in Artificial Intelligence)

- Iterative deepening (IDFS):
 - Try DFS but disallow recursion more than κ levels deep
 - If that fails, increment k and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

TOPOLOGICAL SORT

Problem: Given a DAG G=(V,E), output all vertices in an order such that no vertex appears before another vertex that has an edge to it

One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

QUESTIONS AND COMMENTS

Why do we perform topological sorts only on DAGs?

Because a cycle means there is no correct answer

Is there always a unique answer?

No, there can be 1 or more answers; depends on the graph

Graph with 5 topological orders:

Do some DAGs have exactly 1 answer?

Yes, including all lists

Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

USES OF TOPOLOGICAL SORT

Figuring out how to graduate

Computing an order in which to recompute cells in a spreadsheet

Determining an order to compile files using a Makefile

In general, taking a dependency graph and finding an order of execution

. . .

TOPOLOGICAL SORT

1. Label ("mark") each vertex with its in-degree

- Think "write in a field in the vertex"
- Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:

- a) Choose a vertex **v** with labeled with in-degree of 0
- b) Output **v** and *conceptually* remove it from the graph
- c) For each vertex **u** adjacent to **v** (i.e. **u** such that (**v**,**u**) in **E**), decrement the in-degree of **u**

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?

In-degree: 0 0 2 1 1 1 1 1 3

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x

In-degree: 0 0 2 1 1 1 1 1 3

Removed? x x

In-degree: 0 0 2 1 1 1 1 1 3

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x In-degree: 0 0 2 1 1 1 1 1 3 1 3 0 0

Node: 126 142 143 374 373 410 413 415 417 XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ

CSE373: Data Structures & Algorithms

413

126 142 143 374 373 410 413 415 417 XYZ Node:

Removed?	X	X	X ,	X	X	x x	, X	X
In-degree:	0	0	2	0	0	1/1/00	1 /1 0 0	3
			U			22		<u>/</u> L

CSE373: Data Structures & Algorithms

XYZ

0

NOTICE

Needed a vertex with in-degree 0 to start

Will always have at least 1 because no cycles

Ties among vertices with in-degrees of 0 can be broken arbitrarily

 Can be more than one correct answer, by definition, depending on the graph

IMPLEMENTATION

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both O(1)

Using a queue:

- 1. Label each vertex with its in-degree, enqueue 0-degree nodes
- While queue is not empty
 - a) $\mathbf{v} = \text{dequeue}()$
 - b) Output **v** and remove it from the graph
 - c) For each vertex **u** adjacent to **v** (i.e. **u** such that (**v**,**u**) in **E**), decrement the in-degree of **u**, if new degree is 0, enqueue it

SINGLE SOURCE SHORTEST PATHS

Done: BFS to find the minimum path length from v to u in O(|E|+|V|)

Actually, can find the minimum path length from v to every node

- Still O(|E|+|V|)
- No faster way for a "distinguished" destination in the worst-case

Now: Weighted graphs

Given a weighted graph and node v, find the minimum-cost path from v to every node

As before, asymptotically no harder than for one destination Unlike before, BFS will not work -> only looks at path length.

SHORTEST PATH: APPLICATIONS

Driving directions

Cheap flight itineraries

Network routing

Critical paths in project management

NOT AS EASY

Why BFS won't work: Shortest path may not have the fewest edges

Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Today's algorithm is wrong if edges can be negative
 - There are other, slower (but not terrible) algorithms

DIJKSTRA'S ALGORITHM

The idea: reminiscent of BFS, but adapted to handle weights

- Grow the set of nodes whose shortest distance has been computed
- Nodes not in the set will have a "best distance so far"
- A priority queue will turn out to be useful for efficiency

DIJKSTRA'S ALGORITHM

Initially, start node has cost 0 and all other nodes have cost ∞

At each step:

- Pick closest unknown vertex v
- Add it to the "cloud" of known vertices
- Update distances for nodes with edges from v

That's it! (But we need to prove it produces correct answers)

THE ALGORITHM

- 1. For each node v, set v.cost = ∞ and v.known = false
- 2. Set source.cost = 0
- 3. While there are unknown nodes in the graph
 - a) Select the unknown node v with lowest cost
 - b) Mark v as known
 - c) For each edge (v,u) with weight w,
 c1 = v.cost + w // cost of best path through v to u
 c2 = u.cost // cost of best path to u previously known
 if(c1 < c2) { // if the path through v is better
 u.cost = c1
 u.path = v // for computing actual paths
 }</pre>

IMPORTANT FEATURES

When a vertex is marked known, the cost of the shortest path to that node is known

The path is also known by following back-pointers

While a vertex is still not known, another shorter path to it *might* still be found

vertex	known?	cost	path
Α		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	
Н		??	

Α

vertex	known?	cost	path
А	Y	0	
В		≤ 2	Α
С		≤ 1	Α
D		≤ 4	Α
Е		??	
F		??	
G		??	
Н		??	

A, C

vertex	known?	cost	path
Α	Y	0	
В		≤ 2	Α
С	Y	1	Α
D		≤ 4	Α
Е		≤ 12	С
F		??	
G		??	
Н		??	

A, C, B

vertex	known?	cost	path
Α	Y	0	
В	Υ	2	Α
С	Υ	1	Α
D		≤ 4	Α
E		≤ 12	С
F		≤ 4	В
G		??	
Н		??	

A, C, B, D

vertex	known?	cost	path
Α	Y	0	
В	Y	2	Α
С	Υ	1	Α
D	Y	4	Α
Е		≤ 12	С
F		≤ 4	В
G		??	
Н		??	

A, C, B, D, F

vertex	known?	cost	path
Α	Υ	0	
В	Y	2	Α
С	Υ	1	Α
D	Y	4	Α
E		≤ 12	С
F	Y	4	В
G		??	
Н		≤ 7	F

A, C, B, D, F, H

vertex	known?	cost	path
Α	Y	0	
В	Y	2	Α
С	Υ	1	Α
D	Y	4	Α
E		≤ 12	С
F	Y	4	В
G		≤ 8	Н
Н	Y	7	F

A, C, B, D, F, H, G

vertex	known?	cost	path
Α	Y	0	
В	Y	2	Α
С	Y	1	Α
D	Y	4	Α
Е		≤ 11	G
F	Y	4	В
G	Υ	8	Н
Н	Y	7	F

A, C, B, D, F, H, G, E

vertex	known?	cost	path
Α	Y	0	
В	Y	2	Α
С	Υ	1	Α
D	Y	4	Α
E	Υ	11	G
F	Y	4	В
G	Y	8	Н
Н	Y	7	F

FEATURES

When a vertex is marked known, the cost of the shortest path to that node is known

The path is also known by following back-pointers

While a vertex is still not known, another shorter path to it might still be found

Note: The "Order Added to Known Set" is not important

- A detail about how the algorithm works (client doesn't care)
- Not used by the algorithm (implementation doesn't care)
- It is sorted by path-cost, resolving ties in some way
 - Helps give intuition of why the algorithm works

INTERPRETING THE RESULTS

Now that we're done, how do we get the path from, say, A to E?

Order Added to Known Set:

A, C, B, D, F, H, G, E

known?	cost	path
Y	0	
Y	2	Α
Y	1	Α
Y	4	Α
Y	11	G
Y	4	В
Y	8	Н
Y	7	F
	Y Y Y Y Y Y	Y 0 Y 2 Y 1 Y 4 Y 11 Y 4 Y 8

How would this have worked differently if we were only interested in:

- The path from A to G?
- The path from A to E?

Order Added to Known Set:

A, C, B, D, F, H, G, E

vertex	known?	cost	path
Α	Υ	0	
В	Y	2	Α
С	Υ	1	Α
D	Y	4	Α
Е	Υ	11	G
F	Υ	4	В
G	Y	8	Н
Н	Y	7	F

vertex	known?	cost	path
Α		0	
В		??	
С		??	
D		??	
E		??	
F		??	
G		??	

Α

vertex	known?	cost	path
Α	Y	0	
В		??	
С		≤ 2	Α
D		≤ 1	Α
Е		??	
F		??	
G		??	

A, D

vertex	known?	cost	path
Α	Υ	0	
В		≤ 6	D
С		≤ 2	Α
D	Υ	1	Α
Е		≤ 2	D
F		≤ 7	D
G		≤ 6	D

A, D, C

vertex	known?	cost	path
Α	Υ	0	
В		≤ 6	D
С	Υ	2	Α
D	Υ	1	Α
Е		≤ 2	D
F		≤ 4	С
G		≤ 6	D

A, D, C, E

vertex	known?	cost	path
Α	Y	0	
В		≤ 3	Е
С	Υ	2	Α
D	Y	1	Α
Е	Y	2	D
F		≤ 4	С
G		≤ 6	D

A, D, C, E, B

vertex	known?	cost	path
Α	Y	0	
В	Y	3	E
С	Υ	2	Α
D	Y	1	Α
Е	Y	2	D
F		≤ 4	С
G		≤ 6	D

A, D, C, E, B, F

vertex	known?	cost	path
Α	Y	0	
В	Y	3	Е
С	Y	2	Α
D	Y	1	Α
Е	Y	2	D
F	Y	4	С
G		≤ 6	D

A, D, C, E, B, F, G

vertex	known?	cost	path
Α	Y	0	
В	Y	3	E
С	Y	2	Α
D	Y	1	Α
Е	Y	2	D
F	Y	4	С
G	Y	6	D

NEXT WEEK

- Another topological sort problem
- Weights and pathfinding
- Start Dijkstra's algorithm