CSE 373

MAY 8™ - DIJKSTRAS




GRAPHS REVIEW

 What is some of the terminology for
graphs and what do those terms mean?

* Vertices and Edges

* Directed v. Undirected

* In-degree and out-degree

- Connected

- Weighted v. unweighted

* Cyclic v. acyclic

* DAG: Directed Acyclic Graph




TRAVERSALS

 For an arbitrary graph and starting node
v, find all nodes reachable from v.

* There exists a path from v
* Doing something or “processing” each node

» Determines if an undirected graph is connected?
If a traversal goes through all vertices, then it is
connected

Basic idea

» Traverse through the nodes like a tree

- Mark the nodes as visited to prevent cycles and
from processing the same node twice




ABSTRACT IDEA IN PSEUDOCODE

void traverseGraph (Node ) {
Set pending = emptySet()
pending.add ( )
mark as visited

while (pending i1s not empty) {
= pending.remove ()
for each node adjacent to next
if (u is not marked wvisited) {
mark
pending.add (u)




RUNTIME AND OPTIONS

 Assuming we can add and remove from
our “pending” DS in O(1) time, the entire
traversal is O(|E|)

* Our traversal order depends on what we
use for our pending DS.

« Stack : DFS
* Queue: BFS

 These are the main traversal techniques in CS,
but there are others!




EXAMPLE: TREES

A tree is a graph and make DFS and BFS are easier to “see”

DFS (Node start) {
mark and process start
for each node u adjacent to start
1f u 1is not marked
DF'S (u)

- AB,D,ECFGH
« Exactly what we called a “pre-order traversal” for trees

— The marking is because we support arbitrary graphs and we
want to process each node exactly once




EXAMPLE: TREES

DFS2 (Node start) {
initialize stack s to hold start
mark start as visited

while (s 1s not empty) {
next = s.pop() // and “process”
for each node u adjacent to next
1f(u 1s not marked)
mark u and push onto s

}

- AC,F,H GB,ED
« A different but perfectly fine depth traversal




COMPARISON

Breadth-first always finds shortest length paths, i.e., “optimal
solutions”

- Better for “what is the shortest path from x to y”

But depth-first can use less space in finding a path
* If longest path in the graph is p and highest out-degree is d
then DFS stack never has more than d*p elements
* But a queue for BFS may hold O(|V|) nodes

A third approach (useful in Artificial Intelligence)

* Iterative deepening (IDFS):
« Try DFS but disallow recursion more than K levels deep
- If that fails, increment K and start the entire search over

* Like BFS, finds shortest paths. Like DFS, less space.




TOPOLOGICAL SORT

Problem: Given a DAG G=(V,E), output all vertices in an order such
that no vertex appears before another vertex that has an edge to it

Example input:

CSE 374 XYZ

One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415




QUESTIONS AND
COMMENTS

Why do we perform topological sorts only on DAGs?
- Because a cycle means there is no correct answer

Is there always a unique answer?

* No, there can be 1 or more answers; depends on the graph
« Graph with 5 topological orders:

Do some DAGs have exactly 1 answer?
* Yes, including all lists

Terminology: A DAG represents a partial order and a topological
sort produces a total order that is consistent with it




USES OF
TOPOLOGICAL SORT

Figuring out how to graduate
Computing an order in which to recompute cells in a spreadsheet
Determining an order to compile files using a Makefile

In general, taking a dependency graph and finding an order of
execution

1



TOPOLOGICAL SORT

1. Label (“mark”) each vertex with its in-degree

«  Think “write in a field in the vertex”
«  Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:

a) Choose a vertex v with labeled with in-degree of O
b) Output v and conceptually remove it from the graph

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E),
decrement the in-degree of u




Example

CSE 374 XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?
In-degree: O o 2 1 1 1 1 1 1 3

Output




Example

CSE 374 XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?
In-degree: 0 O /{ 1 1 1 1 1 1 3

1

Output




Example

CSE 374 XYZ

Gse |
SIS TR 126

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x
In-degree: 0 O /{ 1 1 1 1 1 1 3

//

0

Output




Example

CSE 374 XYZ

e
SIS CIESST: s 126

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x

X
In-degree: 0 o/}//11113
/oo

0

Output




Example Output

CSE 374 XYZ :
o alex ) =

142

Cse413
ST 125 Cse413 143
sz 41)

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x X X

In-degree: 0 oﬁ / y 11 1 1 ;/
/ 0 0 2
0



Example

CSE 374
T .’ '

@ 126

Cs 413

Output

142
QATH 126 143
CsE41) 374

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x X X

o ;ywm%//



Example Output

CSE 374 XYZ .
126
4 126

Cse 413
QIATH 126 CsE 413 143
@ 374
373
Node: 126142 143 374 373 410 413 415 417 XYZ

Removed? x X

In-degree: 0 o/x/();/ 6{ g[o//oyoyz}/




Example

CSE 374 126
e @@
=

Output:

143
WATH 126 374
@@; 373
417
Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x X

in-degree: 0 o?{ ////O/Z

0
1



Example Output:
126

CSE 374
CSE 410 142
SN 7
=

374
MATH 126 373
=
410
Node: 126142 143 374 373 410 413 415 417 XYZ

Removed? x

mmmooxf/////f
: ¥

0



Example Output:
126

CSE 374
@ 142
G- @&/
o

374
417
e
413
Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x X X

in-degree: 0 ///// y/ //1?

0



126

CSE 374 147
=

oo gnlen S0
=
T

373

@ 417
410
413
XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x / X / X

In-degree: O

IA LA

;l/ CSE373: Data Structures &
O Algorithms
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NOTICE

Needed a vertex with in-degree 0 to start

* Will always have at least 1 because no cycles

Ties among vertices with in-degrees of 0 can be
broken arbitrarily

» Can be more than one correct answer, by definition,
depending on the graph




IMPLEMENTATION

The trick is to avoid searching for a zero-degree node every time!

+ Keep the “pending” zero-degree nodes in a list, stack, queue, bag, table,

or something
» Order we process them affects output but not correctness or efficiency

provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes

2. While queue is not empty

a) v =dequeue()

b) Output v and remove it from the graph

c) Foreach vertex u adjacent to v (i.e. u such that (v,u) in E),
decrement the in-degree of u, if new degree is 0, enqueue it




SINGLE SOURCE
SHORTEST PATHS

Done: BFS to find the minimum path length from v to u in
O(|E[+[VI)

Actually, can find the minimum path length from v to every node
o Still O(|E|+|V])
* No faster way for a “distinguished” destination in the worst-case

Now: Weighted graphs

Given a weighted graph and node v,
find the minimum-cost path from v to every node

As before, asymptotically no harder than for one destination
Unlike before, BFS will not work -> only looks at path length.




SHORTEST PATH:
APPLICATIONS

Driving directions
Cheap flight itineraries
Network routing

Critical paths in project management




NOT AS EASY

100 100
100 100 @

500

Why BFS won’t work: Shortest path may not have the fewest edges
« Annoying when this happens with costs of flights

We will assume there are no negative weights
«  Problem is ill-defined if there are negative-cost cycles
« Today’s algorithm is wrong if edges can be negative
— There are other, slower (but not terrible) algorithms




DIJKSTRA’S ALGORITHM

The idea: reminiscent of BFS, but adapted to handle weights
» Grow the set of nodes whose shortest distance has been
computed
* Nodes not in the set will have a “best distance so far”
* A priority queue will turn out to be useful for efficiency




DIJKSTRA’S ALGORITHM
0 2 4 W

A B F H
1
5 2 1
4 9 10 3 (G)¥
v 2 C1
| 1
4D
7 12

Initially, start node has cost 0 and all other nodes have cost ®©

At each step:

* Pick closest unknown vertex v
* Add it to the “cloud” of known vertices
« Update distances for nodes with edges from v

That’s it! (But we need to prove it produces correct answers)




THE ALGORITHM

31

For each node v, set v.cost = @ and v.known = false

Set source.cost = 0
While there are unknown nodes in the graph

a) Select the unknown node v with lowest cost

b) Mark v as known

c) Foreach edge (v,u) with weight w,
cl = v.cost + w//costof best path through v to u

c2 = u.cost //costof best path to u previously known
if (cl < c2) { /ifthe path through v is better

u.cost = cl
u.path = v //for computing actual paths

}




IMPORTANT
FEATURES

When a vertex is marked known, the cost of the shortest path
to that node is known

* The path is also known by following back-pointers

While a vertex is still not known, another shorter path to it
might still be found




0 W
A B
1
4 9 5 10 3
E) 2 C W1
7 = ¥

Order Added to Known Set:

4
H
1
4
vertex | known? cost path
A 0
B ?7?
C ?7?
D ?7?
E ?7?
F ?7?
G ?7?
H ?7?




0 2
A B
1
4 9 51 10
v 2 C
4D IE
7 W

Order Added to Known Set:

A

4
H
1
4
vertex | known? cost path
A Y 0
B <2 A
C <1 A
D <4 A
E ?7?
F ?7?
G ?7?
H ?7?




0 2
A B
1
4 9 51 10
) 4
HO == Z-u
7 12

Order Added to Known Set:

A C

4
H
1
4
vertex | known? cost path
A Y 0
B <2 A
C Y 1 A
D <4 A
E <12 C
F ?7?
G ?7?
H ?7?




0 2
A B
1
4 9 51 10
v
HO == Z-u
7 12

Order Added to Known Set:

A C B

4
H
1
4
vertex | known? cost path
A Y 0
B Y 2 A
C Y 1 A
D <4 A
E <12 C
F <4 B
G ?7?
H ?7?




0 2
A B
1
4 9 51 10 3
\ 4 C
2 |
4 D

7 12

Order Added to Known Set:

A CB,D

4
H
1
4
vertex | known? cost path
A Y 0
B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F <4 B
G ?7?
H ?7?




Order Added to Known Set:

A CB,D,F

known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G ?7?

H <7 F




Order Added to Known Set:

A CBDFH

known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <12 C
F Y 4 B
G <8 H
H Y 7 F




Order Added to Known Set:

A CBD,FHG

known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E <11 G
F Y 4 B
G Y 8 H
H Y 7 F




Order Added to Known Set:

known?

path

A C B D,FH G, E

<|=<|<|=<|=<|<]|x<

M| IT[(@|OI>|>>




FEATURES

When a vertex is marked known,
the cost of the shortest path to that node is known

* The path is also known by following back-pointers

While a vertex is still not known,
another shorter path to it might still be found

Note: The “Order Added to Known Set” is not important

A detail about how the algorithm works (client doesn’t care)
* Not used by the algorithm (implementation doesn’t care)

* |t is sorted by path-cost, resolving ties in some way
» Helps give intuition of why the algorithm works




INTERPRETING THE RESULTS

Now that we’re done, how do we get the path from, say, A to E?

Order Added to Known Set:

A C B D,FH G, E

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F




How would this have worked differently if we were only

interested in:

* The path from Ato G?
* The path from Ato E?

Order Added to Known Set:

A C B D,FH G, E

44

vertex | known? cost path

A Y 0

B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F




0 W
2
A Brx_1
1
2{ : |
{C l 5
6
2N\ ¥ 10 G
F

Order Added to Known Set:

45

vertex | known? cost path

A 0

B ?7?
C ?7?
D ?7?
E ?7?
F ?7?
G ?7?




0 W
2
A BM_1

1

2 1 /3 |

\ 4 1 D 5

o C )
Ny 108

F

Order Added to Known Set:

A

vertex | known? cost path
A Y 0
B ?7?
C <2 A
D <1 A
E ?7?
F ?7?
G ?7?




Order Added to Known Set:

A D

47

vertex | known? cost path

A Y 0

B <6 D
C <2 A
D Y 1 A
E <2 D
F <7 D
G <6 D




Order Added to Known Set:

A D,C

vertex | known? cost path

A Y 0

B <6 D
C Y 2 A
D Y 1 A
E <2 D
F <4 C
G <6 D




Order Added to Known Set:

A D CE

vertex | known? cost path

A Y 0

B <3 E
C Y 2 A
D Y 1 A
E Y 2 D
F <4 C
G <6 D




Order Added to Known Set:

A D,CE,B

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F <4 C
G <6 D




Order Added to Known Set:

A,D,C EBF

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G <6 D




Order Added to Known Set:

A,D,C,E,BFG

vertex | known? cost path

A Y 0

B Y 3 E
C Y 2 A
D Y 1 A
E Y 2 D
F Y 4 C
G Y 6 D




NEXT WEEK

* Another topological sort problem
* Weights and pathfinding
« Start Dijkstra’s algorithm




