
CSE 373
MAY 5TH – MORE GRAPHS

MINUTIAE
•  HW4 is out
•  Exam regrades until 4:30 after class

today
•  Also available through next week
•  Exams not picked up are in my office

EXCEPTIONS
•  HW4 requires exception throwing

•  https://docs.oracle.com/javase/tutorial/
essential/exceptions/throwing.html

•  Here’s a good tutorial
•  But, here are the basics

EXCEPTIONS
•  What to do during unacceptable

behavior?
•  Crashing isn’t ideal
•  Exiting doesn’t give the client much

information on why the crash occurred
•  Throwing an exception allows the user to

understand exactly what went wrong.

EXCEPTIONS
•  You may use any exception that you

want, throwing the default Exception()
is fine, but you should get in a habit of
throwing informative errors
•  DuplicateEdgeException on an edge

insertion is much more useful than a
crash or terminate

•  Null Pointer Exception, Array Index Out of
Bounds Exception, Illegal Argument
Exception (good for much of HW4)

GRAPHS
•  Graphs are not an ADT

•  There is no “functions” that a graph
supports

•  Rather, graphs are a theoretical
framework for understanding certain types
of problems.

•  Travelling salesman, path finding,
resource allocating

GRAPHS
•  A graph is composed of two things

•  A set of vertices
•  A set of edges (which are vertex tuples)

•  Trees are types of graphs
•  Each of the nodes is a vertex
•  Each pointer from parent to child is an

edge
•  Represented as G(V,E) to indicate that V

is the set of vertices and E is the set of
edges

GRAPHS

A

B
C

•  What this graphs vertices and edges?

D
E

GRAPHS

A

B
C

•  What this graphs vertices and edges?
•  V = {A, B, C, D, E}
•  E = {(A,B) , (A,C), (A,D), (A,E)}

D
E

GRAPHS

A

B
C

•  What this graphs vertices and edges?
•  V = {A, B, C, D, E}
•  E = {(A,B) , (A,C), (D,A), (E,A)}

D
E

GRAPHS
•  Graphs can be either directed or

undirected
•  Undirected graph, if (A,B) is in the set of

edges, (B,A) must be in the set of edges
•  Directed graphs, both can be in the set of

edges, but those graphs have different
connectivity

•  We call a graph connected if there is a
path between every pair of vertices

GRAPHS
•  Paths and Cycles

•  A path: a set of edges connecting two
vertices where all of the edges are
connected and neither edges nor vertices
are repeated

•  A cycle: a path that starts and ends on the
same

GRAPHS

A

E
C

•  Is this graph connected?
•  Is there a path between every pair of

vertices?

D B

F

G

GRAPHS

A

E
C

•  Is this graph connected?
•  There’s no way to get from the green

graph to the red

D B

F

G

GRAPHS

A

E
C

•  Does this graph have a cycle?
•  How many does it have?

D B

F

G

GRAPHS

A

E
C

•  Does this graph have a cycle?
•  {(A,E),(E,B),(B,D),(D,A)}
•  {(A,B),(B,D),(D,A)}

D B

F

G

GRAPHS
•  Paths and cycles can not have repeated

vertices or edges
•  A path that can repeat vertices or edges is

called a walk
•  A path that can repeat vertices but not

edges is called a trail
•  A circuit is a trail that starts and ends at

the same vertex

GRAPHS
•  Edges can have weights

•  This becomes important when we
consider path finding algorithms

•  Usually, we consider the weights to be the
costs of using a particular edge.

•  In a graph representation of the US
interstate system, the I-90 edge between
Seattle and Spokane may have weight
270 for miles or 4 for hours, depending on
what we want to minimize!

GRAPHS
•  When we consider graphs, we determine

them to be either dense or sparse
•  Dense graphs are very connected, each

vertex is connected to a fraction of the
total vertices

•  Sparse graphs are less connected and
can be more clustered, each vertex is
connected to some constant number of
vertices

GRAPHS
•  When graphs are small, it is difficult to

distinguish between the two
•  If we represent Facebook as a graph,

where users are vertices and “friendships”
are edges, what can we say about the
graph?

•  Directed? No, (A,B) means (B,A)
•  Connected? Very probably
•  Cyclic? Yes, mutual friends
•  Sparse/Dense? Sparse! 338 average!

GRAPHS
•  This “value” is called the degree of the

vertex
•  If you have 338 friends, then that vertex

has degree 338.
•  In directed graph, we separate this into

in-degree and out-degree
•  Consider Twitter, where friendship isn’t

symmetric. The number of followers you
have is your in-degree and the number of
people you follow is your out degree

TRAVERSALS
•  Since graphs are abstractions similar to

trees, we can also perform traversals.
•  If a graph is connected, i.e. there is a path

between all pairs of vertices, then a
traversal can output all nodes if you do it
cleverly

TRAVERSAL

A

E
C

•  Depth-first search (prev graph with (D,G) added to make it
connected
•  Traverse the tree with DFS, if there are multiple nodes to

choose from, go alphabetically. Start at A.

D B

F

G

TRAVERSAL

A

E
C

Output: A

Current Node: A

Out-vertices: B, D, E

D B

F

G

TRAVERSAL

A

E
C

Output: A,B

Current Node: B

Out-vertices: D

D B

F

G

TRAVERSAL

A

E
C

Output: A,B, D

Current Node: D

Out-vertices: A,G

D B

F

G

TRAVERSAL

A

E
C

Output: A,B, D, A

Current Node: A

Out-vertices: B,D,E

D B

F

G

TRAVERSAL

A

E
C

Output: A,B, D, A Oh, no! We have repeated output!
Current Node: A

Out-vertices: B,D,E

D B

F

G

TRAVERSAL
•  Depth first search needs to check which

nodes have been output or else it can get
stuck in loops.
•  This increases the runtime and memory

constraints of the traversal
•  In a connected graph, a BFS will print all

nodes, but it will repeat if there are cycles
and may not terminate

TRAVERSAL
•  As an aside, in-order, pre-order and post-

order traversals only make sense in
binary trees, so they aren’t important for
graphs. However, we do need some way
to order our out-vertices (left and right in
BST).

TRAVERSAL
•  Topological ordering

•  One final ordering for graphs
•  Ordering with a focus on dependency

resolutions
•  Example, consider a graph where

courses are vertices and edges are
prerequisites. A topological ordering is
any valid class order

TRAVERSAL

A

E
C

Start with the nodes that have in-degree 0 (no prereqs)
Then eliminate that vertex (print it out) and eliminate its out
edges.

D B

F

G

TRAVERSAL

A

E
C

What is a valid topological sort of this graph?

D B

F

G

TRAVERSAL

A

E
C

What is a valid topological sort of this graph?
F,C,G,D,A,E,B F,G,D,C,A,E,B

F,G,C,D,A,E,B Is this all the valid solutions?

D B

F

G

NEXT WEEK
•  Another topological sort problem
•  Weights and pathfinding
•  Start Dijkstra’s algorithm

