CSE 373

MAY 5™ - MORE GRAPHS




MINUTIAE

« HWA is out

 Exam regrades until 4:30 after class
today

* Also available through next week
 Exams not picked up are in my office




EXCEPTIONS

« HW4 requires exception throwing

* Here’s a good tutorial
* But, here are the basics




EXCEPTIONS

 What to do during unacceptable
behavior?
* Crashing isn’t ideal

- Exiting doesn'’t give the client much
information on why the crash occurred

* Throwing an exception allows the user to
understand exactly what went wrong.




EXCEPTIONS

 You may use any exception that you
want, throwing the default Exception ()
is fine, but you should get in a habit of
throwing informative errors

* DuplicateEdgeException on an edge
iInsertion is much more useful than a
crash or terminate

* Null Pointer Exception, Array Index Out of
Bounds Exception, lllegal Argument
Exception (good for much of HW4)




GRAPHS

 Graphs are not an ADT

» There is no “functions” that a graph
supports

- Rather, graphs are a theoretical
framework for understanding certain types
of problems.

» Travelling salesman, path finding,
resource allocating




GRAPHS

A graph is composed of two things

* A set of vertices
« A set of edges (which are vertex tuples)
* Trees are types of graphs

- Each of the nodes is a vertex
» Each pointer from parent to child is an
edge
 Represented as G(V,E) to indicate that V

is the set of vertices and E is the set of
edges




GRAPHS

 What this graphs vertices and edges?




GRAPHS

 What this graphs vertices and edges?

- V={A, B, C,D, E)
- E={(AB), (AC), (AD), (A,E)}




GRAPHS

 What this graphs vertices and edges?

- V={A, B, C,D, E)
- E={(AB), (AC), (D,A) (EA)}




GRAPHS

« Graphs can be either directed or
undirected

- Undirected graph, if (A,B) is in the set of
edges, (B,A) must be in the set of edges
 Directed graphs, both can be in the set of

edges, but those graphs have different
connectivity

 We call a graph connected if there is a
path between every pair of vertices




GRAPHS

 Paths and Cycles

* A path: a set of edges connecting two
vertices where all of the edges are
connected and neither edges nor vertices
are repeated

* Acycle: a path that starts and ends on the
same




* Is this graph connected?

* |s there a path between every pair of
vertices?




* Is this graph connected?

* There's no way to get from the green
graph to the red




* Does this graph have a cycle?

* How many does it have?




* Does this graph have a cycle?

* 1(AE).(E,B).(B,D),(D.A);
- {(A,B),(B,D),(D,A)}




GRAPHS

 Paths and cycles can not have repeated
vertices or edges

* A path that can repeat vertices or edges is
called a walk

* A path that can repeat vertices but not
edges is called a tralil

A circuit is a trail that starts and ends at
the same vertex




GRAPHS

 Edges can have weights

* This becomes important when we
consider path finding algorithms

- Usually, we consider the weights to be the
costs of using a particular edge.

* |n a graph representation of the US
interstate system, the 1-90 edge between
Seattle and Spokane may have weight
270 for miles or 4 for hours, depending on
what we want to minimize!







GRAPHS

« When we consider graphs, we determine
them to be either dense or sparse

* Dense graphs are very connected, each
vertex is connected to a fraction of the

total vertices
« Sparse graphs are less connected and

can be more clustered, each vertex is
connected to some constant number of

vertices




GRAPHS

« When graphs are small, it is difficult to
distinguish between the two

- |If we represent Facebook as a graph,
where users are vertices and “friendships’
are edges, what can we say about the
graph?

* Directed? No, (A,B) means (B,A)

« Connected? Very probably

« Cyclic? Yes, mutual friends

« Sparse/Dense? Sparse! 338 average!

]




GRAPHS

« This “value” is called the degree of the
vertex

* If you have 338 friends, then that vertex
has degree 338.

* In directed graph, we separate this into
in-degree and out-degree

« Consider Twitter, where friendship isn’t
symmetric. The number of followers you
have is your in-degree and the number of
people you follow is your out degree




TRAVERSALS

« Since graphs are abstractions similar to
trees, we can also perform traversals.

 |If a graph is connected, i.e. there is a path
between all pairs of vertices, then a
traversal can output all nodes if you do it
cleverly




TRAVERSAL

« Depth-first search (prev graph with (D,G) added to make it
connected

* Traverse the tree with DFS, if there are multiple nodes to
choose from, go alphabetically. Start at A.




TRAVERSAL

Output: A
Current Node: A
Out-vertices: B, D, E




TRAVERSAL

Output: A,B
Current Node: B

Out-vertices: D




TRAVERSAL

o ©
i

Output: A,B, D
Current Node: D
Out-vertices: A,G




TRAVERSAL

o ©
i

Output: A,B, D, A
Current Node: A
Out-vertices: B,D,E




TRAVERSAL

o (=)
(=
@

Output: A,B, D, A Oh, no! We have repeated output!
Current Node: A
Out-vertices: B,D,E




TRAVERSAL

Depth first search needs to check which
nodes have been output or else it can get
stuck in loops.

* This increases the runtime and memory
constraints of the traversal

In a connected graph, a BFS will print all
nodes, but it will repeat if there are cycles
and may not terminate




TRAVERSAL

 As an aside, in-order, pre-order and post-
order traversals only make sense In
binary trees, so they aren’t important for
graphs. However, we do need some way
to order our out-vertices (left and right in
BST).




TRAVERSAL

* Topological ordering

* One final ordering for graphs

* Ordering with a focus on dependency
resolutions
 Example, consider a graph where
courses are vertices and edges are
prerequisites. A topological ordering is
any valid class order




TRAVERSAL

Start with the nodes that have in-degree 0 (no prereqs)

Then eliminate that vertex (print it out) and eliminate its out
edges.




TRAVERSAL

What is a valid topological sort of this graph?




TRAVERSAL

What is a valid topological sort of this graph?
F.C,G,D,A/E,B F,G,D,C,AJE,B
F,G,C,D,AJE,B Is this all the valid solutions?




NEXT WEEK

* Another topological sort problem
* Weights and pathfinding
« Start Dijkstra’s algorithm




