
CSE 373 
MAY 5TH  – MORE GRAPHS 



MINUTIAE 
•  HW4 is out 
•  Exam regrades until 4:30 after class 

today 
•  Also available through next week 
•  Exams not picked up are in my office 



EXCEPTIONS 
•  HW4 requires exception throwing 

•  https://docs.oracle.com/javase/tutorial/
essential/exceptions/throwing.html 

•  Here’s a good tutorial 
•  But, here are the basics 

 



EXCEPTIONS 
•  What to do during unacceptable 

behavior? 
•  Crashing isn’t ideal 
•  Exiting doesn’t give the client much 

information on why the crash occurred 
•  Throwing an exception allows the user to 

understand exactly what went wrong. 

 



EXCEPTIONS 
•  You may use any exception that you 

want, throwing the default Exception() 
is fine, but you should get in a habit of 
throwing informative errors 
•  DuplicateEdgeException on an edge 

insertion is much more useful than a 
crash or terminate 

•  Null Pointer Exception, Array Index Out of 
Bounds Exception, Illegal Argument 
Exception (good for much of HW4) 

 



GRAPHS 
•  Graphs are not an ADT 

•  There is no “functions” that a graph 
supports 

•  Rather, graphs are a theoretical 
framework for understanding certain types 
of problems. 

•  Travelling salesman, path finding, 
resource allocating 



GRAPHS 
•  A graph is composed of two things 

•  A set of vertices 
•  A set of edges (which are vertex tuples) 

•  Trees are types of graphs 
•  Each of the nodes is a vertex 
•  Each pointer from parent to child is an 

edge 
•  Represented as G(V,E) to indicate that V 

is the set of vertices and E is the set of 
edges 



GRAPHS 
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B 
C 

•  What this graphs vertices and edges? 

D 
E 



GRAPHS 

A 

B 
C 

•  What this graphs vertices and edges? 
•  V = {A, B, C, D, E} 
•  E = {(A,B) , (A,C), (A,D), (A,E)} 

D 
E 



GRAPHS 

A 

B 
C 

•  What this graphs vertices and edges? 
•  V = {A, B, C, D, E} 
•  E = {(A,B) , (A,C), (D,A), (E,A)} 

D 
E 



GRAPHS 
•  Graphs can be either directed or 

undirected 
•  Undirected graph, if (A,B) is in the set of 

edges, (B,A) must be in the set of edges 
•  Directed graphs, both can be in the set of 

edges, but those graphs have different 
connectivity 

•  We call a graph connected if there is a 
path between every pair of vertices 



GRAPHS 
•  Paths and Cycles 

•  A path: a set of edges connecting two 
vertices where all of the edges are 
connected and neither edges nor vertices 
are repeated 

•  A cycle: a path that starts and ends on the 
same  



GRAPHS 

A 

E 
C 

•  Is this graph connected? 
•  Is there a path between every pair of 

vertices? 

D B 

F 

G 



GRAPHS 
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E 
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•  Is this graph connected? 
•  There’s no way to get from the green 

graph to the red 

D B 

F 

G 



GRAPHS 
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•  Does this graph have a cycle? 
•  How many does it have? 

D B 

F 

G 



GRAPHS 
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•  Does this graph have a cycle? 
•  {(A,E),(E,B),(B,D),(D,A)}  
•  {(A,B),(B,D),(D,A)} 

D B 

F 

G 



GRAPHS 
•  Paths and cycles can not have repeated 

vertices or edges 
•  A path that can repeat vertices or edges is 

called a walk 
•  A path that can repeat vertices but not 

edges is called a trail 
•  A circuit is a trail that starts and ends at 

the same vertex 



GRAPHS 
•  Edges can have weights 

•  This becomes important when we 
consider path finding algorithms 

•  Usually, we consider the weights to be the 
costs of using a particular edge. 

•  In a graph representation of the US 
interstate system, the I-90 edge between 
Seattle and Spokane may have weight 
270 for miles or 4 for hours, depending on 
what we want to minimize! 





GRAPHS 
•  When we consider graphs, we determine 

them to be either dense or sparse 
•  Dense graphs are very connected, each 

vertex is connected to a fraction of the 
total vertices 

•  Sparse graphs are less connected and 
can be more clustered, each vertex is 
connected to some constant number of 
vertices 



GRAPHS 
•  When graphs are small, it is difficult to 

distinguish between the two 
•  If we represent Facebook as a graph, 

where users are vertices and “friendships” 
are edges, what can we say about the 
graph? 

•  Directed? No, (A,B) means (B,A) 
•  Connected? Very probably 
•  Cyclic? Yes, mutual friends 
•  Sparse/Dense? Sparse! 338 average! 



GRAPHS 
•  This “value” is called the degree of the 

vertex 
•  If you have 338 friends, then that vertex 

has degree 338. 
•  In directed graph, we separate this into 

in-degree and out-degree 
•  Consider Twitter, where friendship isn’t 

symmetric. The number of followers you 
have is your in-degree and the number of 
people you follow is your out degree 



TRAVERSALS 
•  Since graphs are abstractions similar to 

trees, we can also perform traversals. 
•  If a graph is connected, i.e. there is a path 

between all pairs of vertices, then a 
traversal can output all nodes if you do it 
cleverly 



TRAVERSAL 

A 

E 
C 

•  Depth-first search (prev graph with (D,G) added to make it 
connected 
•  Traverse the tree with DFS, if there are multiple nodes to 

choose from, go alphabetically. Start at A. 
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TRAVERSAL 
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Output: A 

Current Node: A 

Out-vertices: B, D, E 
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G 



TRAVERSAL 
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Output: A,B 

Current Node: B 

Out-vertices: D 
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TRAVERSAL 
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Output: A,B, D 

Current Node: D 

Out-vertices: A,G 
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TRAVERSAL 
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Output: A,B, D, A 

Current Node: A 

Out-vertices: B,D,E 

D B 

F 

G 



TRAVERSAL 

A 

E 
C 

Output: A,B, D, A  Oh, no! We have repeated output! 
Current Node: A 

Out-vertices: B,D,E 

D B 

F 

G 



TRAVERSAL 
•  Depth first search needs to check which 

nodes have been output or else it can get 
stuck in loops. 
•  This increases the runtime and memory 

constraints of the traversal 
•  In a connected graph, a BFS will print all 

nodes, but it will repeat if there are cycles 
and may not terminate 



TRAVERSAL 
•  As an aside, in-order, pre-order and post-

order traversals only make sense in 
binary trees, so they aren’t important for 
graphs. However, we do need some way 
to order our out-vertices (left and right in 
BST). 



TRAVERSAL 
•  Topological ordering 

•  One final ordering for graphs 
•  Ordering with a focus on dependency 

resolutions 
•  Example, consider a graph where 

courses are vertices and edges are 
prerequisites. A topological ordering is 
any valid class order 



TRAVERSAL 

A 

E 
C 

Start with the nodes that have in-degree 0 (no prereqs)  
Then eliminate that vertex (print it out) and eliminate its out 
edges. 
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TRAVERSAL 
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What is a valid topological sort of this graph? 
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TRAVERSAL 
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What is a valid topological sort of this graph? 
F,C,G,D,A,E,B   F,G,D,C,A,E,B 

F,G,C,D,A,E,B   Is this all the valid solutions? 

D B 

F 

G 



NEXT WEEK 
•  Another topological sort problem 
•  Weights and pathfinding 
•  Start Dijkstra’s algorithm 


