
CSE 373
MAY 3RD – HASHING & GRAPHS

ASSORTED MINUTIAE
•  Exams are in my office, you can pick

them up during any of my office hours.
•  HW4 out tomorrow morning
•  Regrade requests processed
•  H2P2 and H3P1 will be back next week
•  Finishing discussion on hashing today,

so section tomorrow will be all examples.

MAKE UP ASSIGNMENT
•  Make up assignment end of Week 7

•  Choose either a coding assignment or a
write-up assignment

•  Will overwrite your lowest grade for either
•  EC will be possible on these assignments,

so it could give bonus points

TODAYS LECTURE
•  Hashing considerations
•  Introduction to graphs

HASH FUNCTION
•  In reality, good hash functions are

difficult to produce
•  We want a hash that distributes our data

evenly throughout the space
•  Usually, our hash function returns some

integer, which must then be modded to our
table size

•  Needs to incorporate all the data in the keys

HASH FUNCTION
•  You will not have to produce hash

functions, but you should recognize good
ones
•  They run in constant time
•  They evenly distribute the data
•  They return an integer

•  These hash functions are chosen in
advance, you should not pick a hash
function relative to your data

COLLISIONS
•  Hash table methods are defined by how

they handle collisions
•  Two main approaches

•  Probing
•  Chaining

COLLISIONS
•  Probing

•  Linear probing
•  Try the appropriate hash table row first
•  Increase the index by one until a spot is

found
•  Guaranteed to find a spot if it is available
•  If the array is too full, its operations reach

O(n) time

COLLISIONS
•  Probing

•  Quadratic Probing
•  Rather than increasing by one each time, we

increase by the squares
•  k+1, k+4, k+9, k+16, k+25
•  Certain tables can cause secondary

clustering
•  Can fail to insert if the table is over half full

COLLISIONS
•  Probing

•  Secondary Hashing
•  If two keys collide in the hash table, then a

secondary hash indicates the probing size
•  Need to be careful, possible for infinite loops with a

very empty array

COLLISIONS
•  Chaining

•  Rather than probing for an open position, we
could just save multiple objects in the same
position

•  Some data structure is necessary here
•  Commonly a linked list, AVL tree or secondary

hash table.
•  Resizing isn’t necessary, but if you don’t, you

will get O(n) runtime.

PRIMALITY
•  Array sizes

•  We normally choose our hash tables to have prime size
•  This is because for any number we pick, so long as it is not

a multiple of our table size, they must be coprime
•  Two numbers x and y are coprime if they do not share any

common factors.
•  If the hash table size and the secondary hash value are

coprime, then the search will succeed if there is space
available

•  However, many primes cause secondary clustering when
used with quadratic probing

LOAD FACTOR
•  When discussing hash table efficiency,

we call the proportion of stored data to
table size the load factor. It is represented
by the Greek character lambda (λ).
•  We’ve discussed this a bit implicitly before
•  What are good load-factor (λ) values for each of

our collision techniques?

LOAD FACTOR
•  Linear Probing?
•  Quadratic Probing?
•  Secondary Hashing?
•  Chaining?
•  What are the tradeoffs?

•  Memory efficiency
•  Failure rate
•  Access times?

LOAD FACTOR
•  Linear Probing? 0.25 < λ < 0.5
•  Quadratic Probing? 0.10 < λ < 0.30
•  Secondary Hashing? 0.25 < λ < 0.5
•  Chaining? 3.0 < λ < 10

•  Because we allow multiple items in each
space, we can increase memory
efficiency by taking advantage

•  As long as there are a constant number in
each space, we get O(1) runtimes.

LOAD FACTOR
•  As with most array data structures, you

will need to resize when they get too full
•  Here, these resizes are often for

performance, rather than failure.
•  Hash table maintenance is important
•  Resizing is costly (but still O(n)) because

you have to resize the array and rehash
every element into the new table.

HASH TABLES
•  Hash tables are a good overall data

structure
•  Can provide O(1) access times
•  Can be memory inefficient
•  Probing can fail, and delete with probing

mechanisms is difficult
•  Chaining can be a good balance, but

there is a lot of overhead maintaining all
those data structures

HASH TABLES
•  Understand these tradeoffs and how

these implementations work
•  Section tomorrow will provide practice

problems for each of these hash table
methods

GRAPHS
•  A graph is composed of two things

•  A set of vertices
•  A set of edges (which are vertex tuples)

•  Trees are types of graphs
•  Each of the nodes is a vertex
•  Each pointer from parent to child is an

edge
•  Represented as G(V,E) to indicate that V

is the set of vertices and E is the set of
edges

GRAPHS

A

B
C

•  What this graphs vertices and edges?

D

GRAPHS

A

B
C

•  What this graphs vertices and edges?
•  V = {A, B, C, D}
•  E = {(A,B) , (A,C), (A,D)}

D

GRAPHS

A

B
C

•  What this graphs vertices and edges?
•  V = {A, B, C, D}
•  E = {(B,A) , (C,A), (D,A)}?

D

GRAPHS
•  In that graph, the order did not matter
•  This is called an undirected graph

•  In undirected graphs, an edge from (A,B)
means that there must be an edge from
(B,A)

•  In implementation, both of these edges
need to be present, but if you indicate that
a graph is undirected, you do not need to
indicate both in your list of edges

GRAPHS

A

B
C

•  Is this graph a tree?

D

GRAPHS

A

B

C

•  Is this graph a tree?
•  Yes, you can make the shape by moving

vertices around

D

GRAPHS

A

B

C

•  Is this graph a tree?

D

GRAPHS

A

B

C

•  Is this graph a tree?
•  No, there is no way to rearrange these

vertices because there is a cycle

D

GRAPHS
•  A path is a set of edges which goes from

one vertex to another in a graph
•  A cycle is a path that starts and ends on

the same vertex.
•  A graph is acyclic if no cycles exist in the

graph

GRAPHS

A

B

C

•  What is the cycle here?

D

GRAPHS

A

B

C

•  What is the cycle here?
•  (A,D) (D,C) (C,A)

D

GRAPHS
•  In paths and cycles, the sets of edges

must pass from one vertex to another, i.e.
each edge must share a vertex with some
other edge.
•  (A,B) (B,C) is a path from A to C, while

(A,B) (D,C) is not.
•  There is no way to get from B to D

GRAPHS
•  Trees are acyclic graphs
•  Graphs can be traversed

•  Breadth-first
•  Depth-first

•  Edges can also have weights
•  Path finding on a map
•  Route-optimization problems

•  More graphs!
•  Discuss implementation approaches
•  Prepare for path finding problem for next

week

NEXT CLASS

