CSE 373

MAY 3RD - HASHING & GRAPHS




ASSORTED MINUTIAE

Exams are in my office, you can pick
them up during any of my office hours.

HW4 out tomorrow morning
Regrade requests processed
H2P2 and H3P1 will be back next week

Finishing discussion on hashing today,
so section tomorrow will be all examples.




MAKE UP ASSIGNMENT

 Make up assignment end of Week 7
» Choose either a coding assignment or a
write-up assignment
« Will overwrite your lowest grade for either

» EC will be possible on these assignments,
so it could give bonus points




TODAYS LECTURE

 Hashing considerations
* Introduction to graphs




HASH FUNCTION

* In reality, good hash functions are
difficult to produce

 We want a hash that distributes our data
evenly throughout the space

 Usually, our hash function returns some

integer, which must then be modded to our
table size

* Needs to incorporate all the data in the keys




HASH FUNCTION

* You will not have to produce hash
functions, but you should recognize good
ones

* They run in constant time
» They evenly distribute the data

* They return an integer

 These hash functions are chosen in
advance, you should not pick a hash
function relative to your data




COLLISIONS

 Hash table methods are defined by how
they handle collisions

 Two main approaches

* Probing
 Chaining




COLLISIONS
* Probing

 Linear probing
* Try the appropriate hash table row first

* Increase the index by one until a spot is
found

« Guaranteed to find a spot if it is available

* If the array is too full, its operations reach
O(n) time




COLLISIONS

* Probing
* Quadratic Probing

- Rather than increasing by one each time, we
Increase by the squares

« k+1, k+4, k+9, k+16, k+25

» Certain tables can cause secondary
clustering

« Can fail to insert if the table is over half full




COLLISIONS

* Probing
* Secondary Hashing

 If two keys collide in the hash table, then a
secondary hash indicates the probing size

* Need to be careful, possible for infinite loops with a
very empty array




COLLISIONS
« Chaining

Rather than probing for an open position, we
could just save multiple objects in the same
position

Some data structure is necessary here

Commonly a linked list, AVL tree or secondary
hash table.

Resizing isn’t necessary, but if you don’t, you
will get O(n) runtime.




PRIMALITY

* Array sizes

We normally choose our hash tables to have prime size

This is because for any number we pick, so long as it is not
a multiple of our table size, they must be coprime

Two numbers x and y are coprime if they do not share any
common factors.

If the hash table size and the secondary hash value are
coprime, then the search will succeed if there is space
available

However, many primes cause secondary clustering when
used with quadratic probing




LOAD FACTOR

 When discussing hash table efficiency,
we call the proportion of stored data to
table size the load factor. It is represented
by the Greek character lambda (A).

« We've discussed this a bit implicitly before

- What are good load-factor (A) values for each of
our collision techniques?




LOAD FACTOR

* Linear Probing?

* Quadratic Probing?

« Secondary Hashing?
« Chaining?

What are the tradeoffs?

* Memory efficiency
* Failure rate
 Access times?




LOAD FACTOR

* Linear Probing? 0.25<A<0.5

« Quadratic Probing? 0.10 <A <0.30
« Secondary Hashing? 0.25<A<0.5
 Chaining? 3.0<A<10

- Because we allow multiple items in each
space, we can increase memory
efficiency by taking advantage

* As long as there are a constant number in
each space, we get O(1) runtimes.




LOAD FACTOR

* As with most array data structures, you
will need to resize when they get too full

 Here, these resizes are often for
nerformance, rather than failure.
- Hash table maintenance is important

» Resizing is costly (but still O(n)) because
you have to resize the array and rehash

every element into the new table.




HASH TABLES

 Hash tables are a good overall data
structure

Can provide O(1) access times
Can be memory inefficient

Probing can fail, and delete with probing
mechanisms is difficult

Chaining can be a good balance, but
there is a lot of overhead maintaining all
those data structures




HASH TABLES

 Understand these tradeoffs and how
these implementations work

« Section tomorrow will provide practice
problems for each of these hash table
methods




GRAPHS

A graph is composed of two things

* A set of vertices
« A set of edges (which are vertex tuples)
* Trees are types of graphs

- Each of the nodes is a vertex
» Each pointer from parent to child is an
edge
 Represented as G(V,E) to indicate that V

is the set of vertices and E is the set of
edges




GRAPHS

 What this graphs vertices and edges?




GRAPHS

 What this graphs vertices and edges?
- V={A, B, C, D}
- E={(AB), (AC), (AD)}




GRAPHS

 What this graphs vertices and edges?
- V={A, B, C, D}
- E={(B,A), (CA), (D.A)}?




GRAPHS

* In that graph, the order did not matter
* This is called an undirected graph

* |In undirected graphs, an edge from (A,B)
means that there must be an edge from
(B.A)

* |In implementation, both of these edges
need to be present, but if you indicate that

a graph is undirected, you do not need to
indicate both in your list of edges




GRAPHS

* |Is this graph a tree?




* |Is this graph a tree?

* Yes, you can make the shape by moving
vertices around




* |Is this graph a tree?




* |Is this graph a tree?

* No, there is no way to rearrange these
vertices because there is a cycle




GRAPHS

« A path is a set of edges which goes from
one vertex to another in a graph

 Acycle is a path that starts and ends on
the same vertex.

« A graph is acyclic if no cycles exist in the
graph




 What is the cycle here?




 What is the cycle here?
- (A,D) (D,C) (C,A)




GRAPHS

* In paths and cycles, the sets of edges
must pass from one vertex to another, i.e.
each edge must share a vertex with some
other edge.

* (A,B) (B,C) is a path from Ato C, while
(A,B) (D,C) is not.

* There is no way to get from B to D




GRAPHS

 Trees are acyclic graphs
« Graphs can be traversed

* Breadth-first
* Depth-first
 Edges can also have weights
* Path finding on a map
* Route-optimization problems




NEXT CLASS

 More graphs!
 Discuss implementation approaches

* Prepare for path finding problem for next
week




