
CSE 373
MAY 1ST – HASHING CONCLUSION

EXAM RESULTS
•  Overall, you did very well

•  Average in the mid-80s
•  ADT vs Data Structure
•  Algorithm Analysis
•  Rigor for final exam

EXAM RESULTS
•  If you did poorly on this exam,

•  That’s okay, but we should talk about
what we can do to help with your
performance

•  Midterm scores were high so we’ll speed
up a little bit, and expect the final exam to
be more difficult

GRADE MINUTIAE
•  I will have caught up on regrade requests

by Wednesday, at that point, all grades
from the first half of the quarter will be
finalized.

•  Exam regrades
•  You can discuss compaints with the TAs,

but all points will go through me.
•  Extra office hours on Friday (1:00-2:30)

and (3:30-5:00) for this purpose

GRADE MINUTIAE
•  End of Quarter HW make up

•  At the end of week 7, I will release two
extra credit assignments

•  One will be a complex data structure that
you will need to implement and test

•  The other will be a write-up about some
algorithm or method

•  You may complete one of these two to
replace your lowest grade on HW for
either code or a writeup.

HOMEWORK 4
•  Homework 4 will be on graphs and will

come out after we introduce graphs to
you on Wednesday

•  HW 5 will use the implementation of your
graph from this HW, so please make sure
your implementation is working well

•  You will receive feedback from HW4
before HW5 is due to make sure
everything is working

TODAYS LECTURE
•  Quadratic Probing
•  Separate Chaining

HASHING
•  Review

•  Hashtables have two important parts
•  Hash function
•  Array storage

HASHING
•  Hash function

•  Maps the large subject domain onto the
small set of relevant data.

•  For example, H(x) = x % tablesize
•  The function should run in constant time
•  It should distribute data evenly throughout

the table

HASHING
•  Array storage

•  Array of data that the hash function maps
onto

•  The more full the array is, the higher the
chances for a collision

•  Direct relation between memory efficiency
and runtime efficiency

HASHING
•  Collisions

•  A collision is when two keys map to the same
index in the array.

•  Right now, our strategy is linear probing,
•  Go through the data structure in linear order

until a hole is found
•  Guaranteed to place data if there is room,

but runtime can be bad if there is significant
clustering

HASHING
•  Clustering

•  When a large chunk of the table becomes a
single block of data, all searches and inserts
must iterate through the entire cluster to find
an opening

•  What are some possible improvements to
linear probing?

HASHING
•  Quadratic probing

•  Whereas linear probing increments the index
by one each time, quadratic probing goes
through the squares

•  For example, linear probing would check
index 3, then 3+1, then 3+2, then 3+3, then
3+4 and so forth

•  Quadratic probing would check index 3, then
index 3+1, then 3+4 then 3+9 then 3+16

HASHING
•  Quadratic probing

•  An advantage is that it does not form linear
clusters (primary clustering), however there
are other downsides

QUADRATIC PROBING
•  Let our hash function for ints, H(x) = x%7
•  Insert, 3, 10,17,24,31,38

0
1
2
3
4
5
6

QUADRATIC PROBING
•  Let our hash function for ints, H(x) = x%7
•  Insert, 3, 10,17,24,31,38
•  What happens? 0

1
2
3
4
5
6

•  Let our hash function for ints, H(x) = x%7
•  Insert, 3, 10,17,24,31,38
•  What happens?

QUADRATIC PROBING

0
1
2
3: 3
4
5
6

•  Let our hash function for ints, H(x) = x%7
•  Insert, 3, 10,17,24,31,38
•  What happens?

QUADRATIC PROBING

0
1
2
3: 3
4:10
5
6

•  Let our hash function for ints, H(x) = x%7
•  Insert, 3, 10,17,24,31,38
•  What happens?

QUADRATIC PROBING

0: 17
1
2
3: 3
4:10
5
6

•  Let our hash function for ints, H(x) = x%7
•  Insert, 3, 10,17,24,31,38
•  What happens?

QUADRATIC PROBING

0: 17
1
2
3: 3
4:10
5: 24
6

•  Let our hash function for ints, H(x) = x%7
•  Insert, 3, 10,17,24,31,38
•  What happens?
•  Where does 31 go?

•  31%7 = 3

QUADRATIC PROBING

0: 17
1
2
3: 3
4:10
5: 24
6

•  Let our hash function for ints, H(x) = x%7
•  Insert, 3, 10,17,24,31,38
•  What happens?
•  Where does 31 go?

•  31%7 = 3
•  3+1%7 = 4

QUADRATIC PROBING

0: 17
1
2
3: 3
4:10
5: 24
6

•  Let our hash function for ints, H(x) = x%7
•  Insert, 3, 10,17,24,31,38
•  What happens?
•  Where does 31 go?

•  31%7 = 3
•  3+1%7 = 4
•  3+2%7 = 5

QUADRATIC PROBING

0: 17
1
2
3: 3
4:10
5: 24
6

•  Let our hash function for ints, H(x) = x%7
•  Insert, 3, 10,17,24,31,38
•  What happens?
•  Where does 31 go?

•  31%7 = 3
•  3+1%7 = 4
•  3+2%7 = 5
•  3+4%7 = 0

QUADRATIC PROBING

0: 17
1
2
3: 3
4:10
5: 24
6

•  Let our hash function for ints, H(x) = x%7
•  Insert, 3, 10,17,24,31,38
•  What happens?
•  Where does 31 go?

•  31%7 = 3
•  3+1%7 = 4
•  3+2%7 = 5
•  3+4%7 = 0
•  3+9%7 = 5

QUADRATIC PROBING

0: 17
1
2
3: 3
4:10
5: 24
6

•  Let our hash function for ints, H(x) = x%7
•  Insert, 3, 10,17,24,31,38
•  What happens?
•  Where does 31 go?

•  31%7 = 3
•  3+1%7 = 4
•  3+2%7 = 5
•  3+4%7 = 0
•  3+9%7 = 5
•  3+16%7 = 5

QUADRATIC PROBING

0: 17
1
2
3: 3
4:10
5: 24
6

•  Let our hash function for ints, H(x) = x%7
•  Insert, 3, 10,17,24,31,38
•  What happens?
•  Where does 31 go?

•  31%7 = 3
•  3+1%7 = 4
•  3+2%7 = 5
•  3+4%7 = 0
•  3+9%7 = 5
•  3+16%7 = 5
•  3+25%7 = 0
•  3+36%7 = 4
•  3+49%7 = 0
•  3+64%7 = 4

QUADRATIC PROBING

0: 17
1
2
3: 3
4:10
5: 24
6

•  This is called secondary clustering
•  Even when there is space available in the

table, quadratic probing is not guaranteed
to find an opening

•  In fact, half the array has to be empty to
guarantee an opening

•  This approach reduces the O(n) problem
of linear probing, but it introduces even
larger memory constraints

QUADRATIC PROBING

•  The final probing method uses a
secondary hash function
•  If H(x) and H(y) both point to the same

index, then we increment by some
secondary hash value F(y) each time we
need to find a new position

•  Obviously, F(y) cannot be a multiple of the
table size, or else the location will never
move

SECONDARY HASHING

•  These are the probing techniques
•  However, if we allow two keys to occupy

the same spot in the table, this is called
chaining

•  Chaining will always find a place for data,
but it can get to O(n) runtime if the table
isn’t resized

•  Resizes are costly!

CHAINING

•  Finish our discussion of hash tables and
chaining

•  Introduce a new abstract structure called
the graph

•  Most of the rest of the course will be on
graphs

NEXT CLASS

