
CSE 373
APRIL 26TH – EXAM REVIEW

EXAM FRIDAY
•  Exam Review Tonight

•  5:30pm - 7:00 – EEB 105
•  Section

•  Also Exam review
•  Practice Midterm Solutions

•  Out tonight after review session

EXAM FRIDAY
•  Topics

•  Definitions
•  Stacks and Queues
•  Heaps
•  Runtime Analysis
•  Dictionaries
•  BSTs
•  Traversals

•  AVL Trees
•  Hash Tables

DEFINITIONS
•  Important terms

•  Abstract Data Type
•  Example: Dictionary

•  Supports functions: insert, find, delete
•  Has expected behavior

•  Data Structure
•  Language independent structure which

implements an ADT
•  Example: AVL tree
•  Can be analyzed asymptotically

DEFINITIONS
•  Important terms

•  Implementation
•  Low-level design decisions
•  Language specific

•  Example
•  The Queue ADT supports enqueue, dequeue

and front.
•  Arrays and Linked Lists are examples of the

data structures
•  Implementation: front and back pointers

STACKS AND QUEUES
•  Our first two ADTs

•  Stack:
•  Supports: push(), pop(), top()
•  LIFO order

•  Queue:
•  Supports: enqueue(), dequeue(), front()
•  FIFO order

STACKS AND QUEUES
•  Data structure choices

•  Arrays and Linked Lists
•  Considerations

•  Memory usage
•  Ease of implementation
•  Resizing time

•  Runtimes:
•  O(1) for all functions

HEAPS
•  Priority Queue ADT

•  Supports: insert(), findMin(), deleteMin(),
changePriority()

•  Data is stored in priority, value pairs
•  In this class, we use the min-heap, where a lower

value means it should dequeue first

HEAPS
•  Data Structure

•  Heap
•  Complete binary tree
•  Heap property

•  Implementation
•  Array
•  Find parents/children arithmetically

•  Runtimes
•  Insert: O(log n), findMin: O(1), deleteMin O(log n)
•  ChangePriority: O(log n)
•  buildHeap, O(n)

RUNTIME ANALYSIS
•  Counting the number of operations

•  Comparisons, mathematical operations, assignments
•  For loops and while statements

•  Count the number of times relevant code is executed
•  Important summations

•  Sum of all numbers from 1 to n
•  Sum of the powers of two

RUNTIME ANALYSIS
•  Asymptotic Analysis

•  Best-case, worst-case, average-case
•  Usually we discuss worst-case complexity
•  If we increase the input size, how does the

computation time change
•  BigO notation

•  Upper bound for a given function
•  f(n) = O(g(n) if there exists a c and n0 for which

f(n) < c*g(n) for all n > n0

RUNTIME ANALYSIS
•  Basic ideas

•  O(1): Input size has no effect on runtime
•  O(log n): doubling the input increases the runtime by

some constant amount
•  O(n): linear time, each additional input increases

execution time by a constant amount
•  O(n2): doubling the input increases the runtime by a

factor of 4.
•  O(2n): exponential, increasing the input by one

doublies the runtime

DICTIONARIES
•  ADT

•  Supports the following functions
•  Insert(key k, value v)
•  find(key k)
•  delete(key k)

•  Data is stored in key, value pairs
•  In this course, duplicate keys are not allowed
•  Most data structures can implement a dictionary

BINARY SEARCH TREES
•  Binary trees
•  Nodes with two children
•  Maintains search property

•  All values in the left subtree must be less than the parent
•  All values in the right subtree must be greater than the

parent
•  With each increase in height, the number of nodes in a tree

roughly doubles
•  A completely full tree has 2h-1 nodes
•  Roughly half of a binary search tree are nodes

TRAVERSALS
•  Two main traversal families

•  Depth First Search
•  Breadth First Search

•  DFS
•  Usually implemented recursively
•  Whether the parent is processed before, after or in the

middle of its children determines if the traversal is pre-order,
post-order or in-order respectively

•  BFS

•  Put the root into a queue
•  Dequeue a node, process it and enqueue its children
•  Top to bottom left to right traversal
•  Queue is largest at the widest part of the tree

AVL TREES
•  Specific type of binary search tree
•  Still must implement binary search
•  Nodes in AVL trees have two extra fields, height and

balance
•  Balance = | height(left) – height(right) |
•  Balance for each node must be less than or equal to 1
•  Trees with this condition still have O(log n) height
•  No covering delete in this course
•  Find: O(log n): Insert O(log n)

AVL ROTATIONS
•  AVL Rotations occur when an insertion makes a node

out of balance
•  Relative to the node that is unbalanced, there are four

rotations depending on which grandchild received the new
node.

•  Left-left and right right rotations involve the child of the
affected node being rotated up into position

•  Left-right and right-left rotations involve the grandchild being
rotated up into position. The grandparent and parent
become the two children

•  It is important that these rotations preserve BST property

HASH TABLES
•  A large data set M with a smaller set that should be

saved, D

•  A hash function maps M onto D
•  It should run in O(1) time
•  It should distribute into all of the available spots evenly

•  Hashtables provide O(1) runtime IF
•  Collisions are not a problem
•  Decrease the chance of collisions by increasing the

amount of memory
•  Resizing is costly

•  Resolve collisions by finding the next open space: linear
probing

HASH TABLES
•  Linear probing results in clustering

•  This slows down the expected runtimes of the hash table
•  Needs lots of free space in order to have fast runtimes

•  A good overall data structure
•  Faster runtimes, but more maintenance
•  Important to know when making design decisions

DESIGN DECISION PROBLEM
•  Think about runtime
•  Memory constraints
•  Function prioritizing
•  Experimental considerations

GOOD LUCK!
•  Practice Exams
•  Review tonight
•  Review in section tomorrow
•  Email any questions
•  No office hours Friday or next Monday
•  Grades back in class on Monday

