
CSE 373
APRIL 24TH – HASHING

EXAM FRIDAY
•  Practice exam after class today
•  Topics:

•  Stacks and Queues
•  BigO Notation and runtime Analysis
•  Heaps
•  Trees (BST and AVL)
•  Traversals
•  Design Tradeoffs

EXAM FRIDAY
•  Format

•  No note sheet
•  One section of short answer
•  4-5 Technical Questions
•  1 Design Decision Question
•  Less than 10 minutes per problem

EXAM FRIDAY
•  No Java material on the exam
•  Looking for theoretical understanding

•  Explanations are important (where
indicated)

•  If you get stuck on a problem, move on
•  Any questions?

TODAY’S LECTURE
•  Hashing

•  Basic Concept
•  Hash functions
•  Collision Resolution
•  Runtimes

HASHING
•  Introduction

•  Suppose there is a set of data M
•  Any data we might want to store is a

member of this set. For example, M might
be the set of all strings

•  There is a set of data that we actually
care about storing D, where D << M

•  For an English Dictionary, D might be the
set of English words

HASHING
•  What is our ideal data structure?

•  The data structure should use O(D)
memory

•  No extra memory is allocated
•  The operation should run in O(1) time

•  Accesses should be as fast as possible

HASHING
•  What are some difficulties with this?

•  Need to know the size of D in advance or
lose memory to pointer overhead

•  Hard to go from M -> D in O(1) time

HASHING
•  Memory: The Hash Table

•  Consider an array of size c * D
•  Each index in the array corresponds to some

element in M that we want to store.
•  The data in D does not need any particular

ordering.

THE HASH TABLE
•  How can we do this?

M

D

•  How can we do this?
•  Unsorted Array

THE HASH TABLE

M

Apple

D

•  How can we do this?
•  Unsorted Array

Pear

THE HASH TABLE

M

Apple

D

•  How can we do this?
•  Unsorted Array

Pear

THE HASH TABLE

M

Apple

Orange
D

•  How can we do this?
•  Unsorted Array

Pear

THE HASH TABLE

M

Apple

Orange
Durian D

•  How can we do this?
•  Unsorted Array

Pear

THE HASH TABLE

M

Apple

Orange
Durian

Kumquat
D

•  What is the problem here?
•  Takes O(D) time to find the word in the list
•  Same problem with sorted arrays!

Pear

THE HASH TABLE

M

Apple

Orange
Durian

Kumquat
D

•  What is another solution?
•  Random mapping

Pear

THE HASH TABLE

M

Kumquat

Durian

Apple

Orange

D

•  What’s the problem here?
•  Can’t retrieve the random variable, O(D) search!

Pear

THE HASH TABLE

M

Kumquat

Durian

Apple

Orange

D

•  What about a pseudo-random mapping?
•  This is “the hash function”

Pear

THE HASH TABLE

M

Kumquat

Durian

Apple

Orange

D

h(x)

•  The Hash Function maps the large space
M to our target space D.

•  We want our hash function to do the
following:
•  Be repeatable: H(x) = H(x) every run
•  Be equally distributed: For all y,z in D,
P(H(y)) = P(H(z))!

•  Run in constant time: H(x) = O(1)!

HASH FUNCTIONS

•  Let’s consider an example. We want to
save 10 numbers from all possible Java
ints
•  What is a simple hash function?

HASH EXAMPLE

1

ints

0

2
3
4
5
6
7
8
9

h(x) =
key%10

•  Let’s insert(519) table
•  Where does it go?
•  519%10 =

HASH EXAMPLE

1

ints

0

2
3
4
5
6
7
8
9

h(x) =
key%10

•  Let’s insert(519) table
•  Where does it go?
•  519%10 = 9

HASH EXAMPLE

1
0

2
3
4
5
6
7
8
9: 519

h(x) =
key%10

519

•  Insert(204)

HASH EXAMPLE

1
0

2
3
4
5
6
7
8
9: 519

h(x) =
key%10

519

204

•  Insert(204)

HASH EXAMPLE

1
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

204

•  insert(1001)

HASH EXAMPLE

1
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

204

1001

•  insert(1001)

HASH EXAMPLE

1: 1001
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

204

1001

•  Is there a problem here?

HASH EXAMPLE

1: 1001
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

204

1001

•  Is there a problem here?
•  insert(3744)

HASH EXAMPLE

1: 1001
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

204

1001

3744

•  Is there a problem here?
•  insert(3744)

HASH EXAMPLE

1: 1001
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

204

1001

3744

•  Is there a problem here?
•  insert(3744)
•  This is called a collision!

HASH EXAMPLE

1: 1001
0

2
3
4: 214
5
6
7
8
9: 519

h(x) =
key%10

519

204

1001

3744

•  How to rectify collisions?
•  Think of a strategy for a few minutes

•  Possible solutions:
•  Store in the next available space
•  Store both in the same space
•  Try a different hash
•  Resize the array

HASH EXAMPLE

•  Consider the simplest solution
•  Find the next available spot in the array
•  This solution is called linear probing

LINEAR PROBING

1: 1001
0

2
3
4: 204
5: 3744
6
7
8
9: 519

h(x) =
key%10

519

204

1001

3744

•  What are the problems with this?
•  How do we search for 3744?

•  Need to go to 4, and then cycle through
all of the entries until we find the
element or find a blank space

•  What if we need to add something that
ends in 5?

•  It also ends up in this problem area
•  This is called clustering

LINEAR PROBING

•  What are the negative effects of
clustering?
•  If the cluster becomes too large, two things

happen:
•  The chances of colliding with the cluster

increase
•  The time it takes to find something in the

cluster increases. This isn’t O(1) time!

CLUSTERING

•  How can we solve this problem?
•  Resize the array

•  Give the elements more space to avoid
clusters. How long does this take? O(n)! all of
the elements need to be rehashed.

•  Store multiple items in one location
•  This is called chaining
•  We’ll discuss it after the midterm

CLUSTERING

•  Take-aways for the midterm
•  Hashtables should provide O(1) dictionary operations
•  Collisions make this problem difficult to achieve
•  Hashtables rely on a array and a hash function
•  The array should be relative to the size of the data

you want to keep
•  The hash function should run in constant time and

should distribute among the indices in the target
array

•  Linear probing is a solution for collisions, but only
works when there is lots of free space

•  Resizing is very costly

HASH TABLES

NEXT CLASS
•  Hash Tables

•  Examples, examples, examples
•  No new theory

•  Exam review

