CSE 373

APRIL 24™ - HASHING

EXAM FRIDAY

* Practice exam after class today
* Topics:
« Stacks and Queues
* BigO Notation and runtime Analysis
* Heaps
* Trees (BST and AVL)

* Traversals
» Design Tradeoffs

EXAM FRIDAY

* Format

* No note sheet

One section of short answer

4-5 Technical Questions

1 Design Decision Question

Less than 10 minutes per problem

EXAM FRIDAY

« No Java material on the exam
* Looking for theoretical understanding

« Explanations are important (where
indicated)

 If you get stuck on a problem, move on

 Any questions?

TODAY’S LECTURE

 Hashing
« Basic Concept
« Hash functions

* Collision Resolution
* Runtimes

HASHING

* Introduction

» Suppose there is a set of data M

* Any data we might want to store is a
member of this set. For example, M might
be the set of all strings

* There is a set of data that we actually
care about storing D, where D << M

* For an English Dictionary, D might be the
set of English words

HASHING

 What is our ideal data structure?
» The data structure should use O(D)
memory
* No extra memory is allocated
* The operation should run in O(1) time
* Accesses should be as fast as possible

HASHING

« What are some difficulties with this?

* Need to know the size of D in advance or
lose memory to pointer overhead

- Hard to go from M -> D in O(1) time

HASHING
« Memory: The Hash Table

« Consider an array of size ¢ * D

« Each index in the array corresponds to some
element in M that we want to store.

* The data in D does not need any particular
ordering.

THE HASH TABLE

« How can we do this?

THE HASH TABLE

« How can we do this?
* Unsorted Array

Apple

THE HASH TABLE

« How can we do this?
* Unsorted Array

Apple

Pear

THE HASH TABLE

« How can we do this?
* Unsorted Array

Apple
Pear
Orange

THE HASH TABLE

« How can we do this?
* Unsorted Array

Apple

Pear

Orange

Durian

THE HASH TABLE

« How can we do this?
* Unsorted Array

Apple
Pear
Orange
Durian | D
Kumquat

THE HASH TABLE

 What is the problem here?

« Takes O(D) time to find the word in the list
« Same problem with sorted arrays!

Apple
Pear
Orange
Durian | D
Kumquat

THE HASH TABLE

« What is another solution?

Random mapping

Kumquat

Pear

Durian

Apple

Orange

THE HASH TABLE

 What’s the problem here?

Can'’t retrieve the random variable, O(D) search!

Kumquat
Pear

M Durian

Apple

Orange

THE HASH TABLE

 What about a pseudo-random mapping?

 This is “the hash function”

—>| Kumquat
> Pear

M > h(x) —>| _Durian

—> Apple

—>| QOrange

HASH FUNCTIONS

 The Hash Function maps the large space
M to our target space D.

 We want our hash function to do the
following:
- Be repeatable: H(x) = H(x) every run
* Be equally distributed: For all y,z in D,
P(H(y)) = P(H(z))
* Runin constanttime: H(x) = 0O(1)

HASH EXAMPLE

* Let’s consider an example. We want to
save 10 numbers from all possible Java
ints

* What is a simple hash function?

h(x) =
key%10

ints

QO[NNI [WIN[(—=]O

HASH EXAMPLE

* Let’s insert(519) table

* Where does it go?
* 519%10 =

h(x) =
key%10

ints

QO[NNI [WIN[(—=]O

HASH EXAMPLE

* Let’s insert(519) table

* Where does it go?
* 5319%10=9

519] h(x) =
key%10

Olo(Nlo|u|d|lwNd(=]o

HASH EXAMPLE

. Insert(204)

204

519] h(x) =
key%10

Olo(Nlo|u|d|lwNd(=]o

HASH EXAMPLE

* Insert(204)

204

519 h(x) =
key%10 >

: 214

Olo(Nlo|u|d|lwNd(=]o

HASH EXAMPLE

* insert(1001)

0
204 1
2
519 h(x) = 3
| key%10 —>[4:214
1001 S
6
7
8
—>19: 519

HASH EXAMPLE

* insert(1001)

0
204 —> 1: 1001
2
519 h(x) = 3
| key%10 (4. 214
1001 S
6
V4
8
—>1 9: 519

HASH EXAMPLE

* |s there a problem here?

0
204 —[1: 1001
2
519 h(x) = 3
| key%10 (4. 214
1001 5
6
7
8
{9 519

HASH EXAMPLE

* |s there a problem here?
* Insert(3744)

0
204 —> 1: 1001

2

519 h(x) = 3
key%10 —>1 4. 214

1001 5

6

7

3744 3
—>1 9: 519

HASH EXAMPLE

* |s there a problem here?
* Insert(3744)

0
204 —>11: 1001

2

519 h(x) = 3
key%10 —>1 4: 214

1001 5

6

7

3744 3
—>| 9: 519

HASH EXAMPLE

* |s there a problem here?

* Insert(3744)
 This is called a collision!

0
204 —> 1: 1001

2

519 h(x) = 3
key%10 —>1 4. 214

1001 5

6

7

3744 3
—>1 9: 519

HASH EXAMPLE

 How to rectify collisions?

« Think of a strategy for a few minutes
 Possible solutions:

« Store in the next available space
« Store both in the same space

* Try a different hash

* Resize the array

LINEAR PROBING

« Consider the simplest solution

* Find the next available spot in the array
* This solution is called linear probing

0
204 —>11: 1001
2
519 h(x) = 3
key%10 > 4: 204
1001 > 5: 3744
6
7
3744 3
—>| 9: 519

LINEAR PROBING

 What are the problems with this?

« How do we search for 37447

* Need to go to 4, and then cycle through
all of the entries until we find the
element or find a blank space

« What if we need to add something that
ends in 57

* |t also ends up in this problem area
* This is called clustering

CLUSTERING

 What are the negative effects of
clustering?

* If the cluster becomes too large, two things
happen:

» The chances of colliding with the cluster
Increase

* The time it takes to find something in the
cluster increases. This isn’t O(1) time!

CLUSTERING

« How can we solve this problem?

* Resize the array

* Give the elements more space to avoid
clusters. How long does this take? O(n)! all of

the elements need to be rehashed.
« Store multiple items in one location

« This is called chaining
« We’ll discuss it after the midterm

HASH TABLES

« Take-aways for the midterm

Hashtables should provide O(1) dictionary operations
Collisions make this problem difficult to achieve
Hashtables rely on a array and a hash function

The array should be relative to the size of the data
you want to keep

The hash function should run in constant time and
should distribute among the indices in the target
array

Linear probing is a solution for collisions, but only
works when there is lots of free space

Resizing is very costly

NEXT CLASS

e Hash Tables

 Examples, examples, examples
* No new theory
« Exam review

