# **CSE 373**

#### **APRIL 19<sup>TH</sup> – AVL OPERATIONS**

## **ASSORTED MINUTIAE**

### Exam review

- Wednesday evening (Canvas announcement)
- Regrade requests for HW2 by end of day Monday

## **TODAY'S LECTURE**

- Finish AVL Trees
  - Proof
- Memory analysis
  - Framework and concept

## REVIEW

### AVL Trees

- BST trees with AVL property
- Abs(height(left) height(right)) <= 1</li>
- Heights of subtrees can differ by at most one
- This property must be preserved throughout the tree





### • Add the following into an AVL Tree

• {1,2,3,5,4}





• Add 2, then verify balance





#### • Add three, observe that the balance of '1' is off.

• What case is this?





#### • Add three, observe that the balance of '1' is off.

• What case is this? *Right-right* 





Rotate the tree to preserve balance





#### Rotate the tree to preserve balance

• What is the new root?





#### Rotate the tree to preserve balance

• What is the new root? 2





 Perform the 'left' rotation which brings two into the root position





• Add the 5





- Add the 5
  - Verify balance





Add the 4





#### • Add the 4

• Verify balance





#### Add the 4

• Verify balance. Which node(s) are out of balance?





#### Add the 4

• Verify balance. Which node(s) are out of balance?





#### • Which rotation will fix the tree?





#### • Which rotation will fix the tree?

• Select the lowest out-of-balance node





#### • Which rotation will fix the tree?

Select the lowest out-of-balance node (right-left case)





• What does the final tree look like?





The grandchild (4) moves up to the unbalanced position





#### The grandchild (4) moves up to the unbalanced position

Observe the tree is balanced





 Work among yourselves, create an AVL tree from the input sequence

### REVIEW

 On your own or in small groups, produce the AVL tree from the following sequence of inputs.

{10,20,15,5,0,-5}

### REVIEW

- On your own or in small groups, produce the AVL tree from the following sequence of inputs. {10,20,15,5,0,-5}
- Once you've finished this, think about why this balance condition is enough to give us a tree height in O(log n)

















## **AVL HEIGHT**

Do we get O(log n) height from this balance?

## **AVL HEIGHT**

- Do we get O(log n) height from this balance?
  - We can get somewhat unbalanced trees

## **AVL HEIGHT**

- Do we get O(log n) height from this balance?
  - We can get somewhat unbalanced trees
  - Are the balanced enough?

## AVL HEIGHT (PROOF)

 You do not need to memorize this proof, but it is interesting to think about

## AVL HEIGHT (PROOF)

- You do not need to memorize this proof, but it is interesting to think about
  - Let's consider the most "unbalanced" AVL tree, that is: the tree for each height that has the fewest nodes
• For height 1, there is only one possible tree.

For height 1, there is only one possible tree.

 For height 2, there are two possible trees, each with two nodes.

• For height 1, there is only one possible tree.

• For height 2, there are two possible trees, each with two nodes.



• What about for height three? What tree has the fewest number of nodes?

- What about for height three? What tree has the fewest number of nodes?
  - *Hint: balance will probably not be zero*

- What about for height three? What tree has the fewest number of nodes?
  - *Hint: balance will probably not be zero*



- What about for height three? What tree has the fewest number of nodes?
  - Hint: balance will probably not be zero



There are multiple of these trees, but what's special about it?

 The smallest tree of size three is a node where one child is the smallest tree of size one and the other one is the smallest tree of size two.

• In general then, if  $N_1 = 1$  and  $N_2 = 2$  and  $N_3 = 4$ , what is  $N_k$ ?

- In general then, if  $N_1 = 1$  and  $N_2 = 2$  and  $N_3 = 4$ , what is  $N_k$ ?
  - Powers of two seems intuitive, but this is a good case of why 3 doesn't always make the pattern.

- In general then, if  $N_1 = 1$  and  $N_2 = 2$  and  $N_3 = 4$ , what is  $N_k$ ?
  - Powers of two seems intuitive, but this is a good case of why 3 doesn't always make the pattern.
  - $N_4 = 7$ , how do I know?

- In general then, if  $N_1 = 1$  and  $N_2 = 2$  and  $N_3 = 4$ , what is  $N_k$ ?
  - N<sub>k</sub> = 1 + N<sub>k-1</sub> + N<sub>k-2</sub> Because the smallest AVL tree is a node (1) with a child that is the smallest AVL tree of height k-1 (N<sub>k-1</sub>) and the other child is the smallest AVL tree of height k-2 (N<sub>k-2</sub>).

- In general then, if  $N_1 = 1$  and  $N_2 = 2$  and  $N_3 = 4$ , what is  $N_k$ ?
  - N<sub>k</sub> = 1 + N<sub>k-1</sub> + N<sub>k-2</sub> Because the smallest AVL tree is a node (1) with a child that is the smallest AVL tree of height k-1 (N<sub>k-1</sub>) and the other child is the smallest AVL tree of height k-2 (N<sub>k-2</sub>).
  - This means every non-leaf has balance 1

- In general then, if  $N_1 = 1$  and  $N_2 = 2$  and  $N_3 = 4$ , what is  $N_k$ ?
  - N<sub>k</sub> = 1 + N<sub>k-1</sub> + N<sub>k-2</sub> Because the smallest AVL tree is a node (1) with a child that is the smallest AVL tree of height k-1 (N<sub>k-1</sub>) and the other child is the smallest AVL tree of height k-2 (N<sub>k-2</sub>).
  - This means every non-leaf has balance 1
  - Nothing in the tree is perfectly balanced.

 $N_k = 1 + N_{k-1} + N_{k-2}$  $N_{k-1} = 1 + N_{k-2} + N_{k-3}$ 

 $N_k = 1 + N_{k-1} + N_{k-2}$  $N_{k-1} = 1 + N_{k-2} + N_{k-3}$ 

Substitute the k-1 into the original equation

$$N_k = 1 + N_{k-1} + N_{k-2}$$
  
 $N_{k-1} = 1 + N_{k-2} + N_{k-3}$ 

1 + N<sub>k-3</sub> must be greater than zero

 $N_{k} = 1 + N_{k-1} + N_{k-2}$   $N_{k-1} = 1 + N_{k-2} + N_{k-3}$   $N_{k} = 1 + (1 + N_{k-2} + N_{k-3}) + N_{k-2}$   $N_{k} = 1 + 2N_{k-2} + N_{k-3}$   $N_{k} > 2N_{k-2}$ 

1 + N<sub>k-3</sub> must be greater than zero

 $N_{k} = 1 + N_{k-1} + N_{k-2}$   $N_{k-1} = 1 + N_{k-2} + N_{k-3}$   $N_{k} = 1 + (1 + N_{k-2} + N_{k-3}) + N_{k-2}$   $N_{k} = 1 + 2N_{k-2} + N_{k-3}$   $N_{k} > 2N_{k-2}$ 

This means the tree doubles in size after every two height (compared to a perfect tree which doubles with every added height)

 If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
  - Insert(key k, value v)
  - Find(key k)

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
  - Insert(key k, value v)
  - Find(key k)
  - Delete(key k): not covered in this class

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
  - Insert(key k, value v)
  - Find(key k) : O(height) = O(log n)
  - Delete(key k): not covered in this class

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
  - Insert(key k, value v) = O(log n) + balancing
  - Find(key k) : O(height) = O(log n)
  - Delete(key k): not covered in this class

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
  - Insert(key k, value v) = O(log n) + balancing
  - Find(key k) : O(height) = O(log n)
  - Delete(key k): not covered in this class
- How long does it take to perform a balance?

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
  - Insert(key k, value v) = O(log n) + balancing
  - Find(key k) : O(height) = O(log n)
  - Delete(key k): not covered in this class
- How long does it take to perform a balance?
  - There are at most three nodes and four subtrees to move around.

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
  - Insert(key k, value v) = O(log n) + balancing
  - Find(key k) : O(height) = O(log n)
  - Delete(key k): not covered in this class
- How long does it take to perform a balance?
  - There are at most three nodes and four subtrees to move around. O(1)

By using AVL rotations, we can keep the tree balanced

- By using AVL rotations, we can keep the tree balanced
- An AVL tree has O(log n) height

- By using AVL rotations, we can keep the tree balanced
- An AVL tree has O(log n) height
- This does not come at an increased asymptotic runtime for insert.

- By using AVL rotations, we can keep the tree balanced
- An AVL tree has O(log n) height
- This does not come at an increased asymptotic runtime for insert.
- Rotations take a constant time.

Similar to runtime analysis

- Similar to runtime analysis
  - Consider the worst case

- Similar to runtime analysis
  - Rather than counting the number of operations, we count the amount of memory needed

- Similar to runtime analysis
  - Rather than counting the number of operations, we count the amount of memory needed
  - During the operation, when does the algorithm need to "keep track" of the most number of things?

Breadth first search
#### Breadth first search

 The Queue keeps track of the elements that need to be analyzed next.

- The Queue keeps track of the elements that need to be analyzed next.
- This is the memory we need to consider

- The Queue keeps track of the elements that need to be analyzed next.
- This is the memory we need to consider
- At what point does the Queue have the most amount stored in it?

- The Queue keeps track of the elements that need to be analyzed next.
- This is the memory we need to consider
- At what point does the Queue have the most amount stored in it?
- When the tree is at its widest how many nodes is that?

- The Queue keeps track of the elements that need to be analyzed next.
- This is the memory we need to consider
- At what point does the Queue have the most amount stored in it?
- When the tree is at its widest how many nodes is that?
- N/2: half the nodes of a tree are leaves

 Consider finding an element in a sorted linked list

- Consider finding an element in a sorted linked list
  - How much memory does this take?

- Consider finding an element in a sorted linked list
  - How much memory does this take?
  - Don't count the data structure, only count the amount of memory that the actual algorithm uses.

- Consider finding an element in a sorted linked list
  - How much memory does this take?
  - Don't count the data structure, only count the amount of memory that the actual algorithm uses.
  - What does it need to "keep track" of?

- Consider finding an element in a sorted linked list
  - How much memory does this take?
  - Don't count the data structure, only count the amount of memory that the actual algorithm uses.
  - What does it need to "keep track" of?
  - Just the think we're looking for!

- Consider finding an element in a sorted linked list
  - How much memory does this take?
  - Don't count the data structure, only count the amount of memory that the actual algorithm uses.
  - What does it need to "keep track" of?
  - Just the think we're looking for! O(1)

We care about the asymptotic memory usage

- We care about the asymptotic memory usage
- That is, as the input size of the data structures increases, does the amount of extra memory increase?

- We care about the asymptotic memory usage
- That is, as the input size of the data structures increases, does the amount of extra memory increase?
  - AVL Insert?

- We care about the asymptotic memory usage
- That is, as the input size of the data structures increases, does the amount of extra memory increase?
  - **AVL Insert?** No, we only need to keep track of the parent and grandparent.

- We care about the asymptotic memory usage
- That is, as the input size of the data structures increases, does the amount of extra memory increase?
  - **AVL Insert?** No, we only need to keep track of the parent and grandparent.
  - DFS?

- We care about the asymptotic memory usage
- That is, as the input size of the data structures increases, does the amount of extra memory increase?
  - **AVL Insert?** No, we only need to keep track of the parent and grandparent.
  - DFS? Yes, we need to keep track of all the elements leading back up to the root

## **NEXT WEEK**

- Hashtables
  - The O(1) holy grail!

## **NEXT WEEK**

- Hashtables
  - The O(1) holy grail!
- Exam review on Wednesday

## **NEXT WEEK**

- Hashtables
  - The O(1) holy grail!
- Exam review on Wednesday
- Exam on Friday!