
CSE 373
APRIL 19TH – AVL OPERATIONS

ASSORTED MINUTIAE
•  Exam review

•  Wednesday evening (Canvas
announcement)

•  Regrade requests for HW2 by end of day
Monday

TODAY’S LECTURE
•  Finish AVL Trees

•  Proof
•  Memory analysis

•  Framework and concept

REVIEW
•  AVL Trees

•  BST trees with AVL property
•  Abs(height(left) – height(right)) <= 1
•  Heights of subtrees can differ by at most

one
•  This property must be preserved

throughout the tree

REVIEW
1

•  Add the following into an AVL Tree
•  {1,2,3,5,4}

REVIEW
1

•  Add 2, then verify balance

2

REVIEW
1

•  Add three, observe that the balance of ‘1’ is off.
•  What case is this?

2

3 0

1

2

REVIEW
1

•  Add three, observe that the balance of ‘1’ is off.
•  What case is this? Right-right

2

3 0

1

2

REVIEW
1

•  Rotate the tree to preserve balance

2

3 0

1

2

REVIEW
1

•  Rotate the tree to preserve balance
•  What is the new root?

2

3 0

1

2

REVIEW
1

•  Rotate the tree to preserve balance
•  What is the new root? 2

2

3 0

1

2

REVIEW

1

•  Perform the ‘left’ rotation which brings two into
the root position

2

3

REVIEW

1

•  Add the 5

2

3

5

REVIEW

1

•  Add the 5
•  Verify balance

2

3

5

REVIEW

1

•  Add the 4

2

3

5

4

REVIEW

1

•  Add the 4
•  Verify balance

2

3

5

4

REVIEW

1

•  Add the 4
•  Verify balance. Which node(s) are out of balance?

2

3

5

4

REVIEW

1

•  Add the 4
•  Verify balance. Which node(s) are out of balance?

2

3

5

4

REVIEW

1

•  Which rotation will fix the tree?

2

3

5

4

REVIEW

1

•  Which rotation will fix the tree?
•  Select the lowest out-of-balance node

2

3

5

4

REVIEW

1

•  Which rotation will fix the tree?
•  Select the lowest out-of-balance node (right-left case)

2

3

5

4

REVIEW

1

•  What does the final tree look like?

2

3

5

4

REVIEW

1

•  The grandchild (4) moves up to the unbalanced position

2

4

5 3

REVIEW

1

•  The grandchild (4) moves up to the unbalanced position
•  Observe the tree is balanced

2

4

5 3

REVIEW

1

•  Work among yourselves, create an AVL tree from the
input sequence

2

4

5 3

REVIEW
•  On your own or in small groups, produce

the AVL tree from the following sequence
of inputs.

 {10,20,15,5,0,-5}

REVIEW
•  On your own or in small groups, produce

the AVL tree from the following sequence
of inputs.

 {10,20,15,5,0,-5}
•  Once you’ve finished this, think about why

this balance condition is enough to give us a
tree height in O(log n)

REVIEW
{10,20,15,5,0,-5}

5

REVIEW
{10,20,15,5,0,-5}

0

5

15

REVIEW
{10,20,15,5,0,-5}

0

5

15

20 10 -5

REVIEW
{10,20,15,5,0,-5}

0

5

15

20 10 -5

AVL HEIGHT
•  Do we get O(log n) height from this

balance?

AVL HEIGHT
•  Do we get O(log n) height from this

balance?
•  We can get somewhat unbalanced trees

AVL HEIGHT
•  Do we get O(log n) height from this

balance?
•  We can get somewhat unbalanced trees
•  Are the balanced enough?

AVL HEIGHT (PROOF)
•  You do not need to memorize this proof,

but it is interesting to think about

AVL HEIGHT (PROOF)
•  You do not need to memorize this proof,

but it is interesting to think about
•  Let’s consider the most “unbalanced” AVL

tree, that is: the tree for each height that has
the fewest nodes

AVL HEIGHT (PROOF)
•  For height 1, there is only one possible

tree.

AVL HEIGHT (PROOF)
•  For height 1, there is only one possible

tree.

•  For height 2, there are two possible trees,
each with two nodes.

AVL HEIGHT (PROOF)
•  For height 1, there is only one possible

tree.

•  For height 2, there are two possible trees,
each with two nodes.

AVL HEIGHT (PROOF)
•  What about for height three? What tree

has the fewest number of nodes?

AVL HEIGHT (PROOF)
•  What about for height three? What tree

has the fewest number of nodes?
•  Hint: balance will probably not be zero

AVL HEIGHT (PROOF)
•  What about for height three? What tree

has the fewest number of nodes?
•  Hint: balance will probably not be zero

AVL HEIGHT (PROOF)
•  What about for height three? What tree

has the fewest number of nodes?
•  Hint: balance will probably not be zero

There are multiple of these trees, but what’s
special about it?

AVL HEIGHT (PROOF)
•  The smallest tree of size three is a node

where one child is the smallest tree of
size one and the other one is the smallest
tree of size two.

AVL HEIGHT (PROOF)
•  In general then, if N1 = 1 and N2 = 2 and

 N3 = 4, what is Nk?

AVL HEIGHT (PROOF)
•  In general then, if N1 = 1 and N2 = 2 and

 N3 = 4, what is Nk?
•  Powers of two seems intuitive, but this is

a good case of why 3 doesn’t always
make the pattern.

AVL HEIGHT (PROOF)
•  In general then, if N1 = 1 and N2 = 2 and

 N3 = 4, what is Nk?
•  Powers of two seems intuitive, but this is

a good case of why 3 doesn’t always
make the pattern.

•  N4 = 7, how do I know?

AVL HEIGHT (PROOF)
•  In general then, if N1 = 1 and N2 = 2 and

 N3 = 4, what is Nk?
•  Nk = 1 + Nk-1 + Nk-2

Because the smallest AVL tree is a node (1)
with a child that is the smallest AVL tree of
height k-1 (Nk-1) and the other child is the
smallest AVL tree of height k-2 (Nk-2).

AVL HEIGHT (PROOF)
•  In general then, if N1 = 1 and N2 = 2 and

 N3 = 4, what is Nk?
•  Nk = 1 + Nk-1 + Nk-2

Because the smallest AVL tree is a node (1)
with a child that is the smallest AVL tree of
height k-1 (Nk-1) and the other child is the
smallest AVL tree of height k-2 (Nk-2).

•  This means every non-leaf has balance 1

AVL HEIGHT (PROOF)
•  In general then, if N1 = 1 and N2 = 2 and

 N3 = 4, what is Nk?
•  Nk = 1 + Nk-1 + Nk-2

Because the smallest AVL tree is a node (1)
with a child that is the smallest AVL tree of
height k-1 (Nk-1) and the other child is the
smallest AVL tree of height k-2 (Nk-2).

•  This means every non-leaf has balance 1
•  Nothing in the tree is perfectly balanced.

AVL HEIGHT (PROOF)
Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"

AVL HEIGHT (PROOF)

Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"

AVL HEIGHT (PROOF)
Substitute the k-1 into the original equation

Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"

AVL HEIGHT (PROOF)
1 + Nk-3 must be greater than zero

Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"
Nk = 1 + (1 + Nk-2 + Nk-3) + Nk-2"
Nk = 1 + 2Nk-2 + Nk-3"
Nk > 2Nk-2"

 "

"

AVL HEIGHT (PROOF)
1 + Nk-3 must be greater than zero

Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"
Nk = 1 + (1 + Nk-2 + Nk-3) + Nk-2"
Nk = 1 + 2Nk-2 + Nk-3"
Nk > 2Nk-2"
This means the tree doubles in size after every
two height (compared to a perfect tree which
doubles with every added height)
 "

"

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?
•  Insert(key k, value v)
•  Find(key k)

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?
•  Insert(key k, value v)
•  Find(key k)
•  Delete(key k): not covered in this class

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?
•  Insert(key k, value v)
•  Find(key k) : O(height) = O(log n)
•  Delete(key k): not covered in this class

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?
•  Insert(key k, value v) = O(log n) + balancing
•  Find(key k) : O(height) = O(log n)
•  Delete(key k): not covered in this class

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?
•  Insert(key k, value v) = O(log n) + balancing
•  Find(key k) : O(height) = O(log n)
•  Delete(key k): not covered in this class

•  How long does it take to perform a balance?

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?
•  Insert(key k, value v) = O(log n) + balancing
•  Find(key k) : O(height) = O(log n)
•  Delete(key k): not covered in this class

•  How long does it take to perform a balance?
•  There are at most three nodes and four

subtrees to move around.

AVL CONCLUSION
•  If AVL rotation can enforce O(log n)

height, what are the asymptotic runtimes
for our functions?
•  Insert(key k, value v) = O(log n) + balancing
•  Find(key k) : O(height) = O(log n)
•  Delete(key k): not covered in this class

•  How long does it take to perform a balance?
•  There are at most three nodes and four

subtrees to move around. O(1)

AVL CONCLUSION
•  By using AVL rotations, we can keep the

tree balanced

AVL CONCLUSION
•  By using AVL rotations, we can keep the

tree balanced
•  An AVL tree has O(log n) height

AVL CONCLUSION
•  By using AVL rotations, we can keep the

tree balanced
•  An AVL tree has O(log n) height
•  This does not come at an increased

asymptotic runtime for insert.

AVL CONCLUSION
•  By using AVL rotations, we can keep the

tree balanced
•  An AVL tree has O(log n) height
•  This does not come at an increased

asymptotic runtime for insert.
•  Rotations take a constant time.

MEMORY ANALYSIS
•  Similar to runtime analysis

MEMORY ANALYSIS
•  Similar to runtime analysis

•  Consider the worst case

MEMORY ANALYSIS
•  Similar to runtime analysis

•  Rather than counting the number of
operations, we count the amount of memory
needed

MEMORY ANALYSIS
•  Similar to runtime analysis

•  Rather than counting the number of
operations, we count the amount of memory
needed

•  During the operation, when does the
algorithm need to “keep track” of the most
number of things?

MEMORY ANALYSIS
•  Breadth first search

MEMORY ANALYSIS
•  Breadth first search

•  The Queue keeps track of the elements that
need to be analyzed next.

MEMORY ANALYSIS
•  Breadth first search

•  The Queue keeps track of the elements that
need to be analyzed next.

•  This is the memory we need to consider

MEMORY ANALYSIS
•  Breadth first search

•  The Queue keeps track of the elements that
need to be analyzed next.

•  This is the memory we need to consider
•  At what point does the Queue have the most

amount stored in it?

MEMORY ANALYSIS
•  Breadth first search

•  The Queue keeps track of the elements that
need to be analyzed next.

•  This is the memory we need to consider
•  At what point does the Queue have the most

amount stored in it?
•  When the tree is at its widest – how many

nodes is that?

MEMORY ANALYSIS
•  Breadth first search

•  The Queue keeps track of the elements that
need to be analyzed next.

•  This is the memory we need to consider
•  At what point does the Queue have the most

amount stored in it?
•  When the tree is at its widest – how many

nodes is that?
•  N/2: half the nodes of a tree are leaves

MEMORY ANALYSIS
•  Consider finding an element in a sorted

linked list

MEMORY ANALYSIS
•  Consider finding an element in a sorted

linked list
•  How much memory does this take?

MEMORY ANALYSIS
•  Consider finding an element in a sorted

linked list
•  How much memory does this take?
•  Don’t count the data structure, only count the

amount of memory that the actual algorithm
uses.

MEMORY ANALYSIS
•  Consider finding an element in a sorted

linked list
•  How much memory does this take?
•  Don’t count the data structure, only count the

amount of memory that the actual algorithm
uses.

•  What does it need to “keep track” of?

MEMORY ANALYSIS
•  Consider finding an element in a sorted

linked list
•  How much memory does this take?
•  Don’t count the data structure, only count the

amount of memory that the actual algorithm
uses.

•  What does it need to “keep track” of?
•  Just the think we’re looking for!

MEMORY ANALYSIS
•  Consider finding an element in a sorted

linked list
•  How much memory does this take?
•  Don’t count the data structure, only count the

amount of memory that the actual algorithm
uses.

•  What does it need to “keep track” of?
•  Just the think we’re looking for! O(1)

MEMORY ANALYSIS
•  We care about the asymptotic memory

usage

MEMORY ANALYSIS
•  We care about the asymptotic memory

usage
•  That is, as the input size of the data

structures increases, does the amount of
extra memory increase?

MEMORY ANALYSIS
•  We care about the asymptotic memory

usage
•  That is, as the input size of the data

structures increases, does the amount of
extra memory increase?
•  AVL Insert?

MEMORY ANALYSIS
•  We care about the asymptotic memory

usage
•  That is, as the input size of the data

structures increases, does the amount of
extra memory increase?
•  AVL Insert? No, we only need to keep track

of the parent and grandparent.

MEMORY ANALYSIS
•  We care about the asymptotic memory

usage
•  That is, as the input size of the data

structures increases, does the amount of
extra memory increase?
•  AVL Insert? No, we only need to keep track

of the parent and grandparent.
•  DFS?

MEMORY ANALYSIS
•  We care about the asymptotic memory

usage
•  That is, as the input size of the data

structures increases, does the amount of
extra memory increase?
•  AVL Insert? No, we only need to keep track

of the parent and grandparent.
•  DFS? Yes, we need to keep track of all the

elements leading back up to the root

NEXT WEEK
•  Hashtables

•  The O(1) holy grail!

NEXT WEEK
•  Hashtables

•  The O(1) holy grail!
•  Exam review on Wednesday

NEXT WEEK
•  Hashtables

•  The O(1) holy grail!
•  Exam review on Wednesday
•  Exam on Friday!

