
CSE 373 
APRIL 19TH – AVL OPERATIONS 



ASSORTED MINUTIAE 
•  Exam review  

•  Wednesday evening (Canvas 
announcement) 

•  Regrade requests for HW2 by end of day 
Monday 



TODAY’S LECTURE 
•  Finish AVL Trees 

•  Proof 
•  Memory analysis 

•  Framework and concept 



REVIEW 
•  AVL Trees 

•  BST trees with AVL property 
•  Abs(height(left) – height(right)) <= 1 
•  Heights of subtrees can differ by at most 

one 
•  This property must be preserved 

throughout the tree 



REVIEW 
1 

•  Add the following into an AVL Tree 
•  {1,2,3,5,4} 
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•  Add 2, then verify balance 

2 



REVIEW 
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•  Add three, observe that the balance of ‘1’ is off. 
•  What case is this? 
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•  Add three, observe that the balance of ‘1’ is off. 
•  What case is this? Right-right 
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1 

•  Rotate the tree to preserve balance 
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•  Rotate the tree to preserve balance 
•  What is the new root? 
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REVIEW 
1 

•  Rotate the tree to preserve balance 
•  What is the new root? 2 
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REVIEW 

1 

•  Perform the ‘left’ rotation which brings two into 
the root position 
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3 
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•  Add the 5 
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•  Add the 5 
•  Verify balance 
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•  Add the 4 
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•  Add the 4 
•  Verify balance 
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•  Add the 4 
•  Verify balance. Which node(s) are out of balance? 
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•  Add the 4 
•  Verify balance. Which node(s) are out of balance? 
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•  Which rotation will fix the tree? 
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1 

•  Which rotation will fix the tree? 
•  Select the lowest out-of-balance node 
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REVIEW 

1 

•  Which rotation will fix the tree? 
•  Select the lowest out-of-balance node (right-left case) 
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3 

5 

4 



REVIEW 
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•  What does the final tree look like? 
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REVIEW 
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•  The grandchild (4) moves up to the unbalanced position 
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•  The grandchild (4) moves up to the unbalanced position 
•  Observe the tree is balanced 
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REVIEW 
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•  Work among yourselves, create an AVL tree from the 
input sequence 
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REVIEW 
•  On your own or in small groups, produce 

the AVL tree from the following sequence 
of inputs. 

 {10,20,15,5,0,-5} 



REVIEW 
•  On your own or in small groups, produce 

the AVL tree from the following sequence 
of inputs. 

 {10,20,15,5,0,-5} 
•  Once you’ve finished this, think about why 

this balance condition is enough to give us a 
tree height in O(log n) 



REVIEW 
{10,20,15,5,0,-5} 

5 



REVIEW 
{10,20,15,5,0,-5} 

0 

5 

15 



REVIEW 
{10,20,15,5,0,-5} 
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5 

15 

20 10 -5 



REVIEW 
{10,20,15,5,0,-5} 

0 

5 

15 

20 10 -5 



AVL HEIGHT 
•  Do we get O(log n) height from this 

balance? 
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AVL HEIGHT 
•  Do we get O(log n) height from this 

balance? 
•  We can get somewhat unbalanced trees 
•  Are the balanced enough? 



AVL HEIGHT (PROOF) 
•  You do not need to memorize this proof, 

but it is interesting to think about 



AVL HEIGHT (PROOF) 
•  You do not need to memorize this proof, 

but it is interesting to think about 
•  Let’s consider the most “unbalanced” AVL 

tree, that is: the tree for each height that has 
the fewest nodes 
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•  For height 1, there is only one possible 

tree. 
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AVL HEIGHT (PROOF) 
•  For height 1, there is only one possible 

tree. 

•  For height 2, there are two possible trees, 
each with two nodes. 
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AVL HEIGHT (PROOF) 
•  What about for height three? What tree 

has the fewest number of nodes? 
•  Hint: balance will probably not be zero 

 
 
There are multiple of these trees, but what’s 
special about it? 



AVL HEIGHT (PROOF) 
•  The smallest tree of size three is a node 

where one child is the smallest tree of 
size one and the other one is the smallest 
tree of size two. 
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a good case of why 3 doesn’t always 
make the pattern. 



AVL HEIGHT (PROOF) 
•  In general then, if N1 = 1 and N2 = 2 and  

 N3 = 4, what is Nk? 
•  Powers of two seems intuitive, but this is 

a good case of why 3 doesn’t always 
make the pattern. 

•  N4 = 7, how do I know? 



AVL HEIGHT (PROOF) 
•  In general then, if N1 = 1 and N2 = 2 and  

 N3 = 4, what is Nk? 
•  Nk = 1 + Nk-1 + Nk-2 

Because the smallest AVL tree is a node (1) 
with a child that is the smallest AVL tree of 
height k-1 (Nk-1) and the other child is the 
smallest AVL tree of height k-2 (Nk-2). 
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AVL HEIGHT (PROOF) 
•  In general then, if N1 = 1 and N2 = 2 and  

 N3 = 4, what is Nk? 
•  Nk = 1 + Nk-1 + Nk-2 

Because the smallest AVL tree is a node (1) 
with a child that is the smallest AVL tree of 
height k-1 (Nk-1) and the other child is the 
smallest AVL tree of height k-2 (Nk-2). 

•  This means every non-leaf has balance 1 
•  Nothing in the tree is perfectly balanced. 



AVL HEIGHT (PROOF) 
Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"



AVL HEIGHT (PROOF) 
 

Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"



AVL HEIGHT (PROOF) 
Substitute the k-1 into the original equation 

Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"



AVL HEIGHT (PROOF) 
1 + Nk-3 must be greater than zero 

Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"
Nk = 1 + (1 + Nk-2 + Nk-3) + Nk-2"
Nk = 1 + 2Nk-2 + Nk-3"
Nk > 2Nk-2"

 "

"



AVL HEIGHT (PROOF) 
1 + Nk-3 must be greater than zero 

Nk = 1 + Nk-1 + Nk-2  
Nk-1 = 1 + Nk-2 + Nk-3"
Nk = 1 + (1 + Nk-2 + Nk-3) + Nk-2"
Nk = 1 + 2Nk-2 + Nk-3"
Nk > 2Nk-2"
This means the tree doubles in size after every 
two height (compared to a perfect tree which 
doubles with every added height) 
 "

"
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AVL CONCLUSION 
•  If AVL rotation can enforce O(log n) 

height, what are the asymptotic runtimes 
for our functions? 
•  Insert(key k, value v) = O(log n) + balancing 
•  Find(key k) : O(height) = O(log n) 
•  Delete(key k): not covered in this class 

•  How long does it take to perform a balance? 
•  There are at most three nodes and four 

subtrees to move around. O(1) 
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AVL CONCLUSION 
•  By using AVL rotations, we can keep the 

tree balanced 
•  An AVL tree has O(log n) height 
•  This does not come at an increased 

asymptotic runtime for insert. 
•  Rotations take a constant time. 
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MEMORY ANALYSIS 
•  Similar to runtime analysis 

•  Consider the worst case 
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MEMORY ANALYSIS 
•  Similar to runtime analysis 

•  Rather than counting the number of 
operations, we count the amount of memory 
needed 

•  During the operation, when does the 
algorithm need to “keep track” of the most 
number of things? 



MEMORY ANALYSIS 
•  Breadth first search  
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MEMORY ANALYSIS 
•  Breadth first search  

•  The Queue keeps track of the elements that 
need to be analyzed next. 

•  This is the memory we need to consider 
•  At what point does the Queue have the most 

amount stored in it? 
•  When the tree is at its widest – how many 

nodes is that? 
•  N/2: half the nodes of a tree are leaves 
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MEMORY ANALYSIS 
•  Consider finding an element in a sorted 

linked list 
•  How much memory does this take? 
•  Don’t count the data structure, only count the 

amount of memory that the actual algorithm 
uses. 

•  What does it need to “keep track” of? 
•  Just the think we’re looking for! O(1) 
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MEMORY ANALYSIS 
•  We care about the asymptotic memory 

usage 
•  That is, as the input size of the data 

structures increases, does the amount of 
extra memory increase? 
•  AVL Insert? No, we only need to keep track 

of the parent and grandparent. 
•  DFS? Yes, we need to keep track of all the 

elements leading back up to the root 
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•  Hashtables 

•  The O(1) holy grail! 
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NEXT WEEK 
•  Hashtables 

•  The O(1) holy grail! 
•  Exam review on Wednesday 
•  Exam on Friday! 


