CSE 373

APRIL 19™ - AVL OPERATIONS




ASSORTED MINUTIAE

 Exam review

- Wednesday evening (Canvas
announcement)

 Regrade requests for HW2 by end of day
Monday




TODAY’S LECTURE

 Finish AVL Trees

* Proof
 Memory analysis

* Framework and concept




REVIEW

 AVL Trees

« BST trees with AVL property

* Abs(height(left) — height(right)) <=1

* Heights of subtrees can differ by at most
one

* This property must be preserved
throughout the tree




REVIEW

« Add the following into an AVL Tree
- {1,2,3,5,4}




REVIEW

&

« Add 2, then verify balance




REVIEW

&,

of

 Add three, observe that the balance of ‘1’ is off.

 What case is this?




REVIEW

&,

of

 Add three, observe that the balance of ‘1’ is off.

« What case is this? Right-right




REVIEW

&,

of

 Rotate the tree to preserve balance




REVIEW

&,

of

 Rotate the tree to preserve balance

 What is the new root?




REVIEW

&,

of

 Rotate the tree to preserve balance

 \What is the new root? 2




REVIEW

©

* Perform the ‘left’ rotation which brings two into
the root position




REVIEW

I,

 Addthe 5




REVIEW

o8

 Addthe 5

* Verify balance




REVIEW

Ofte

 Add the 4




REVIEW

Ofte

 Add the 4

* Verify balance




REVIEW

 Add the 4

+ Verify balance. Which node(s) are out of balance?




REVIEW

 Add the 4

+ Verify balance. Which node(s) are out of balance?




REVIEW

 Which rotation will fix the tree?




REVIEW

 Which rotation will fix the tree?

« Select the lowest out-of-balance node




REVIEW

 Which rotation will fix the tree?

+ Select the lowest out-of-balance node (right-left case)




REVIEW

« What does the final tree look like?




REVIEW

o8

oflo

* The grandchild (4) moves up to the unbalanced position




REVIEW

oflo

* The grandchild (4) moves up to the unbalanced position

 QObserve the tree is balanced




REVIEW

oflo

 Work among yourselves, create an AVL tree from the
input sequence




REVIEW

 On your own or in small groups, produce
the AVL tree from the following sequence

of inputs.
{10,20,15,5,0,-5}




REVIEW

 On your own or in small groups, produce
the AVL tree from the following sequence

of inputs.
{10,20,15,5,0,-5}

* Once you’ve finished this, think about why
this balance condition is enough to give us a
tree height in O(log n)




REVIEW

{10,20,15,5,0,-5)

5




REVIEW

{10,20,15,5,0,-5)

o s




REVIEW

{10,20,15,5,0,-5)




REVIEW

{10,20,15,5,0,-5)




AVL HEIGHT

Do we get O(log n) height from this
balance?




AVL HEIGHT

Do we get O(log n) height from this
balance?

* We can get somewhat unbalanced trees




AVL HEIGHT

Do we get O(log n) height from this
balance?

* We can get somewhat unbalanced trees
 Are the balanced enough?




AVL HEIGHT (PROOF)

* You do not need to memorize this proof,
but it is interesting to think about




AVL HEIGHT (PROOF)

* You do not need to memorize this proof,
but it is interesting to think about

* Let’s consider the most “unbalanced” AVL
tree, that is: the tree for each height that has
the fewest nodes




AVL HEIGHT (PROOF)

* For height 1, there is only one possible

tree.
O




AVL HEIGHT (PROOF)

* For height 1, there is only one possible

tree.
O

* For height 2, there are two possible trees,
each with two nodes.




AVL HEIGHT (PROOF)

* For height 1, there is only one possible

tree.
O

* For height 2, there are two possible trees,
each with two nodes.

v d




AVL HEIGHT (PROOF)

 What about for height three? What tree
has the fewest number of nodes?




AVL HEIGHT (PROOF)

 What about for height three? What tree
has the fewest number of nodes?

* Hint: balance will probably not be zero




AVL HEIGHT (PROOF)

 What about for height three? What tree
has the fewest number of nodes?

* Hint: balance will probably not be zero




AVL HEIGHT (PROOF)

 What about for height three? What tree
has the fewest number of nodes?

* Hint: balance will probably not be zero

There are multiple of these trees, but what’s
special about it?




AVL HEIGHT (PROOF)

* The smallest tree of size three is a node
where one child is the smallest tree of
size one and the other one is the smallest
tree of size two.




AVL HEIGHT (PROOF)

* In general then, if N,=1 and N, =2 and
N, =4, whatis N, ?




AVL HEIGHT (PROOF)

* In general then, if N,=1 and N, =2 and
N, =4, whatis N, ?

* Powers of two seems intuitive, but this is
a good case of why 3 doesn’t always
make the pattern.




AVL HEIGHT (PROOF)

* In general then, if N,=1 and N, =2 and
N, =4, whatis N, ?

* Powers of two seems intuitive, but this is
a good case of why 3 doesn’t always
make the pattern.

* N,=7, how do | know?




AVL HEIGHT (PROOF)

* In general then, if N,=1 and N, =2 and
N, =4, whatis N, ?

* Ny=1+N +N,
Because the smallest AVL tree is a node (1)
with a child that is the smallest AVL tree of
height k-1 (N,_,) and the other child is the

smallest AVL tree of height k-2 (N, ,).




AVL HEIGHT (PROOF)

* In general then, if N,=1 and N, =2 and
N, =4, whatis N, ?

* Ny=1+N +N,
Because the smallest AVL tree is a node (1)
with a child that is the smallest AVL tree of
height k-1 (N,_,) and the other child is the

smallest AVL tree of height k-2 (N, ,).
- This means every non-leaf has balance 1




AVL HEIGHT (PROOF)

* In general then, if N,=1 and N, =2 and
N, =4, whatis N, ?
* Ny=1+N +N,
Because the smallest AVL tree is a node (1)
with a child that is the smallest AVL tree of

height k-1 (N,_,) and the other child is the
smallest AVL tree of height k-2 (N, ,).

- This means every non-leaf has balance 1
* Nothing in the tree is perfectly balanced.




AVL HEIGHT (PROOF)

Ny=1+ N, + N,




AVL HEIGHT (PROOF)




AVL HEIGHT (PROOF)

Substitute the k-1 into the original equation

N,=1+ N__; + N,




AVL HEIGHT (PROOF)

1 + N, ; must be greater than zero

=1+ N, + N,

Nk
N, _
N, = 1 + (1 + N, , + N, ;) + N,
N, = 1 + 2N,_, + N,_,

Nk

> 2Ny,




AVL HEIGHT (PROOF)

1 + N, ; must be greater than zero

=1+ N, + N__,
, =1+ N, + N,

Ny
N, _
Ny =1+ (1 +N_, + N_3) + N,
N, =1 + 2N,_, + Ny_;

N, > 2N, _,

This means the tree doubles in size after every
two height (compared to a perfect tree which
doubles with every added height)




AVL CONCLUSION

 If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?




AVL CONCLUSION

 If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?

* Insert(key k, value v)
* Find(key k)




AVL CONCLUSION

 If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?

* Insert(key k, value v)
* Find(key k)
* Delete(key k): not covered in this class




AVL CONCLUSION

 If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?

* Insert(key k, value v)
* Find(key k) : O(height) = O(log n)
* Delete(key k): not covered in this class




AVL CONCLUSION

* If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?

* Insert(key k, value v) = O(log n) + balancing
* Find(key k) : O(height) = O(log n)
* Delete(key k): not covered in this class




AVL CONCLUSION

If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?
* Insert(key k, value v) = O(log n) + balancing
* Find(key k) : O(height) = O(log n)
* Delete(key k): not covered in this class
How long does it take to perform a balance?




AVL CONCLUSION

 If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?

* Insert(key k, value v) = O(log n) + balancing

* Find(key k) : O(height) = O(log n)

* Delete(key k): not covered in this class
 How long does it take to perform a balance?

 There are at most three nodes and four
subtrees to move around.




AVL CONCLUSION

 If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?

* Insert(key k, value v) = O(log n) + balancing

* Find(key k) : O(height) = O(log n)

* Delete(key k): not covered in this class
 How long does it take to perform a balance?

 There are at most three nodes and four
subtrees to move around. O(1)




AVL CONCLUSION

By using AVL rotations, we can keep the
tree balanced




AVL CONCLUSION

By using AVL rotations, we can keep the
tree balanced

 An AVL tree has O(log n) height




AVL CONCLUSION

By using AVL rotations, we can keep the
tree balanced

 An AVL tree has O(log n) height

 This does not come at an increased
asymptotic runtime for insert.




AVL CONCLUSION

By using AVL rotations, we can keep the
tree balanced

An AVL tree has O(log n) height

This does not come at an increased
asymptotic runtime for insert.

Rotations take a constant time.




MEMORY ANALYSIS

« Similar to runtime analysis




MEMORY ANALYSIS

« Similar to runtime analysis

 Consider the worst case




MEMORY ANALYSIS

« Similar to runtime analysis

« Rather than counting the number of
operations, we count the amount of memory
needed




MEMORY ANALYSIS

« Similar to runtime analysis

« Rather than counting the number of
operations, we count the amount of memory

needed

* During the operation, when does the
algorithm need to “keep track” of the most
number of things?




MEMORY ANALYSIS

 Breadth first search




MEMORY ANALYSIS

 Breadth first search

* The Queue keeps track of the elements that
need to be analyzed next.




MEMORY ANALYSIS

 Breadth first search

* The Queue keeps track of the elements that
need to be analyzed next.

* This is the memory we need to consider




MEMORY ANALYSIS

* Breadth first search
» The Queue keeps track of the elements that
need to be analyzed next.
* This is the memory we need to consider

» At what point does the Queue have the most
amount stored in it?




MEMORY ANALYSIS

* Breadth first search
» The Queue keeps track of the elements that
need to be analyzed next.
* This is the memory we need to consider

» At what point does the Queue have the most
amount stored in it?

* When the tree is at its widest — how many
nodes is that?




MEMORY ANALYSIS

 Breadth first search

The Queue keeps track of the elements that
need to be analyzed next.

This is the memory we need to consider

At what point does the Queue have the most
amount stored in it?

When the tree is at its widest — how many
nodes is that?

N/2: half the nodes of a tree are leaves




MEMORY ANALYSIS

« Consider finding an element in a sorted
linked list




MEMORY ANALYSIS

« Consider finding an element in a sorted
linked list

* How much memory does this take?




MEMORY ANALYSIS

« Consider finding an element in a sorted
linked list

* How much memory does this take?

* Don’t count the data structure, only count the
amount of memory that the actual algorithm
uses.




MEMORY ANALYSIS

« Consider finding an element in a sorted
linked list

* How much memory does this take?

* Don’t count the data structure, only count the
amount of memory that the actual algorithm

uses.
« What does it need to “keep track” of?




MEMORY ANALYSIS

« Consider finding an element in a sorted
linked list

* How much memory does this take?

* Don’t count the data structure, only count the
amount of memory that the actual algorithm
uses.

« What does it need to “keep track” of?
 Just the think we’re looking for!




MEMORY ANALYSIS

« Consider finding an element in a sorted
linked list

* How much memory does this take?

* Don’t count the data structure, only count the
amount of memory that the actual algorithm
uses.

« What does it need to “keep track” of?
» Just the think we’re looking for! O(1)




MEMORY ANALYSIS

 We care about the asymptotic memory
usage




MEMORY ANALYSIS

 We care about the asymptotic memory
usage

 That is, as the input size of the data
structures increases, does the amount of
extra memory increase?




MEMORY ANALYSIS

 We care about the asymptotic memory
usage

 That is, as the input size of the data
structures increases, does the amount of
extra memory increase?

 AVL Insert?




MEMORY ANALYSIS

 We care about the asymptotic memory
usage

 That is, as the input size of the data
structures increases, does the amount of
extra memory increase?

* AVL Insert? No, we only need to keep track
of the parent and grandparent.




MEMORY ANALYSIS

 We care about the asymptotic memory
usage

 That is, as the input size of the data
structures increases, does the amount of
extra memory increase?

* AVL Insert? No, we only need to keep track
of the parent and grandparent.

- DFS?




MEMORY ANALYSIS

 We care about the asymptotic memory
usage

 That is, as the input size of the data
structures increases, does the amount of
extra memory increase?

* AVL Insert? No, we only need to keep track
of the parent and grandparent.

 DFS? Yes, we need to keep track of all the
elements leading back up to the root




NEXT WEEK

« Hashtables
* The O(1) holy grail!




NEXT WEEK

 Hashtables
* The O(1) holy grail!
 Exam review on Wednesday




NEXT WEEK

 Hashtables
* The O(1) holy grail!
 Exam review on Wednesday

 Exam on Friday!




