
CSE 373 
APRIL 19TH – AVL OPERATIONS 



ASSORTED MINUTIAE 
•  HW2 code grades out tonight 
•  HW3 due tonight 

•  Last HW before midterm 
•  Exam review  

•  Next Wednesday (in class) 
•  Options for TA review session out tonight 



TODAY’S LECTURE 
•  AVL Trees 

•  Balance 
•  Implementation 

•  Memory analysis 
•  Will discuss after AVL on Friday 



REVIEW 
•  AVL Trees 

•  BST trees with AVL property 
•  Abs(height(left) – height(right)) <= 1 
•  Heights of subtrees can differ by at most 

one 
•  This property must be preserved 

throughout the tree 
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•  What about this one? 
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•  What about this one? 
•  No, 8 is out of balance 
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•  Is this an AVL Tree? 
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•  Is this an AVL Tree? 
•  No, AVL trees must still maintain Binary Search 



AVL OPERATIONS 
•  Since AVL trees are also BST trees, they 

should support the same functionality 
•  Insert(key k, value v) 
•  Find(key k): Same as BST! 
•  Delete(key k): Not presented in this course 

•  For insert, we should maintain AVL property 
as we build 



AVL OPERATIONS 
•  Insert(key k, value v): 

•  Insert the key value pair into the dictionary 
•  Verify that balance is maintained 
•  If not, correct the tree 

•  How do we correct the tree? 



AVL INSERT 

6 

•  Start with the single root 



AVL INSERT 

6 

•  Add 7 to the tree. Is balance preserved? 
•  Yes 
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AVL INSERT 

6 

•  Add 9 to the tree. Is balance preserved? 
•  No. 
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AVL INSERT 

6 

•  How do we correct this imbalance? 
•  Important to preserve binary search 
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AVL INSERT 

6 

•  What shape do we want? 
•  What then do we have as the root? 
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AVL INSERT 

6 

•  Since 7 must be the root, we “rotate” that node 
into position. 
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AVL “ROTATION” 
•  To correct this case: 

•  B must become the root 
•  We rotate B to the root position 
•  A becomes the left child of B 
•  This is called the “left rotation” 
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AVL “ROTATION” 
•  Right rotation 

•  Symmetric concept 
•  B must become the new root 
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AVL “ROTATION” 
•  These are the “single” rotations 

•  In general, this rotation occurs when an 
addition is made to the right-right or left-left 
grandchild 

•  The balance might not be off on the 
parent! An insert might upset balance up 
the tree 



AVL “ROTATION” 
•  General case 

•  Suppose this tree 
is balanced, {X,Y,Z} 
all have the same 
height 
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AVL “ROTATION” 
•  General case 

•  Suppose this tree 
is balanced, {X,Y,Z} 
all have the same 
height 

•  Adding A, puts C out 
of balance 

•  Rotate B up and pass 
the Y subtree to C 
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AVL “ROTATION” 
•  General case 

•  Suppose this tree 
is balanced, {X,Y,Z} 
all have the same 
height 

•  Adding A, puts C out 
of balance 

•  Rotate B up and pass 
the Y subtree to C 

•  Perform this rotation at the lowest point 
of imbalance 
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SINGLE ROTATION EXAMPLE 

•  Consider the above tree 
•  Is it an AVL tree? Yes 
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SINGLE ROTATION EXAMPLE 

•  Add 16 to the tree 
•  Is it unbalanced now? Where? 22 
•  Also at 15, but we choose the lowest point 
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SINGLE ROTATION EXAMPLE 

•  Perform the rotation around 22 
•  What rotation takes place? 
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SINGLE ROTATION EXAMPLE 

•  Perform the rotation around 22 
•  What rotation takes place? 
•  What is the resulting tree? 
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SINGLE ROTATION EXAMPLE 

•  19 must move up to where 22 was 
•  20 changes parents 
•  Balances are recomputed throughout the tree 
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AVL “ROTATION” 
•  These two rotations (right-right and left-

left) are symmetric and can be solved the 
same way 
•  Named by the location of the added node 

relative to the unbalanced node 
•  What are the other two cases? 



AVL “ROTATION” 
•  Right left case 

•  Again, A is out of balance 
•  This time, the addition (B) 

comes between A and C 
•  In this case, the grandchild 

must become the root. 
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AVL “ROTATION” 
•  Identifying what should 

be the new root is key 
•  Imagine “lifting” up the root 
•  Where will the children have 

to go to maintain the search 
property? 
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AVL “ROTATION” 
•  This is for your reference later.  
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AVL “ROTATION” 

•  Let’s do an example. Insert(13) 
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AVL “ROTATION” 

•  Where is the imbalance? 
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AVL “ROTATION” 

•  Where is the imbalance? 
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AVL “ROTATION” 

•  Where is the imbalance? (also 7 and 10) 
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AVL “ROTATION” 

•  What must be the new root? 
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AVL “ROTATION” 

•  What must be the new root? 
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AVL “ROTATION” 

•  What must be the new root? Why? 
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AVL “ROTATION” 

•  What does the new tree look like? 
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AVL “ROTATION” 

•  The replaced root is always a child of the 
new root! 
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NEXT CLASS 
•  AVL Trees 

•  Even more examples! 
•  Showing that this actually gives us O(log n) 

height 
•  Showing insert is O(1) 

•  Memory analysis 
•  Formalization to help with confusion from 

last week 

 


