CSE 373

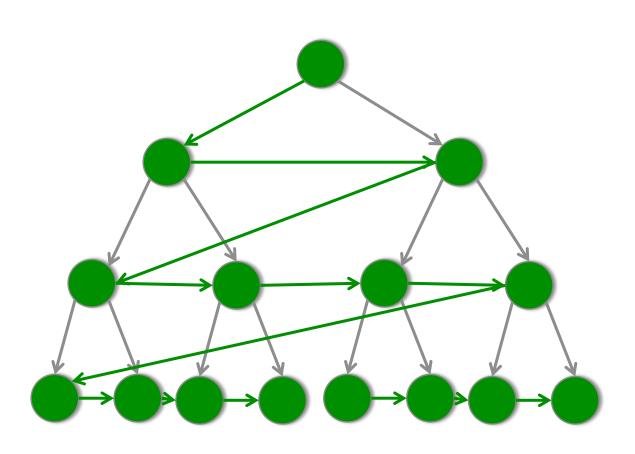
APRIL 17TH – TREE BALANCE AND AVL

ASSORTED MINUTIAE

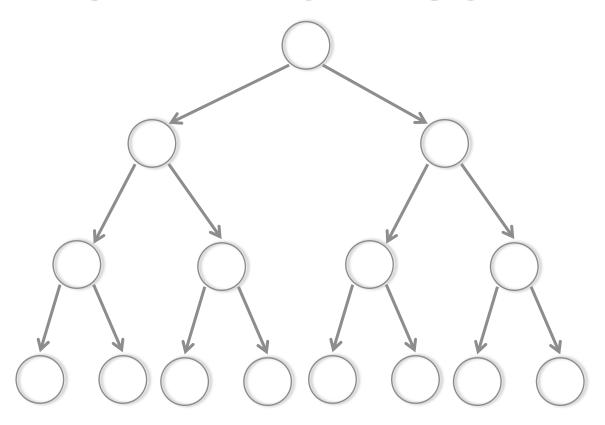
- HW3 due Wednesday
 - Double check submissions
 - Use binary search for SADict
- Midterm text Friday
 - Review in Class on Wednesday
- Testing Advice
 - Empty and New are different edge cases
 - HW1 regrade

TODAY'S LECTURE

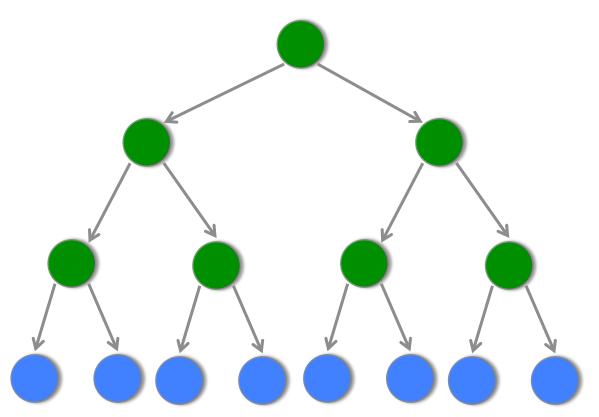
- Tree traversals
 - Memory Allocation
 - Traversal ordering
- Tree Balance
 - Improving on worst case time for trees



- Breadth First Search
 - Enqueue the root
 - While the queue has elements
 - Dequeue
 - Process
 - Enqueue children
 - How much memory does this take?



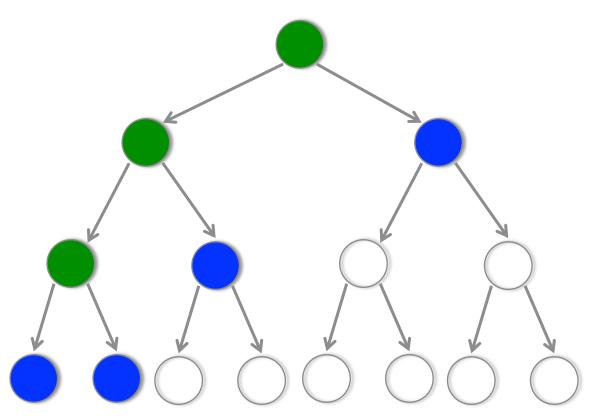
When does the queue have the most elements?



- At the widest point in the traversal
 - How many elements is this?

- Breadth First Search
 - In a perfect tree (where every row is complete) of size n, how many elements are in the last row?
 - ceiling(N/2), this is important to know!
 - O(n) memory usage!

- What about depth first search?
 - When does the stack have the most elements on it?



- When does the stack have the most elements?
 - When it's at the bottom

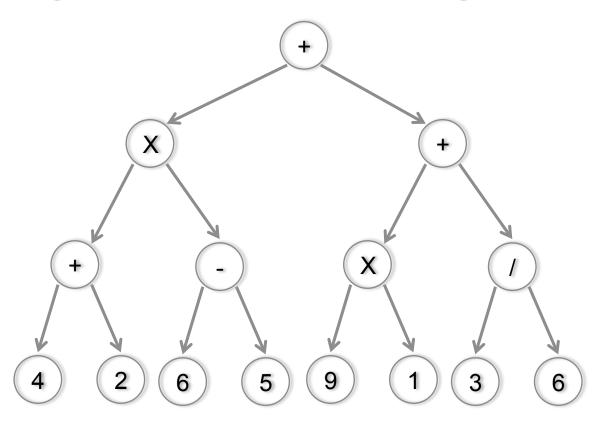
- How many elements are in the stack in this worst case?
 - The height of the tree, O(n) if the tree is one-sided, but O(log n) if the tree is balanced
 - We will discuss balance later
 - Classic exam question! Consider memory AND execution times

- Depth First Search
 - Iterative and Recursive options
 - Consider the recursive approach we discussed in class

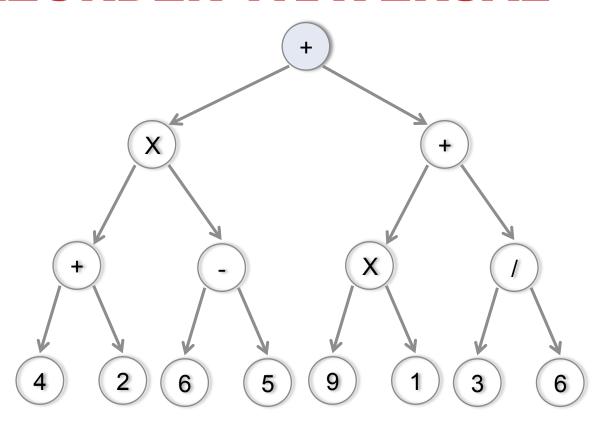
Ordering

- What is the difference between these three implementations
 - Process; DFS(left); DFS(right)
 - DFS(left); Process; DFS(right)
 - DFS(left); DFS(right); Process
- How does this impact the final output?

- Ordering
 - Three traversal types
 - Pre-order
 - In-order
 - Post-order
- Instruction (Parse) trees



Stack:	
Output:	



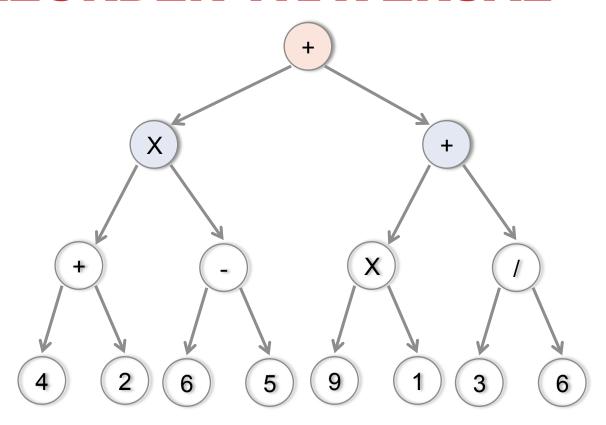
Add the root to the stack

St	2	\sim	/ •
Οl	a	U	Λ.

+

Output:

+			



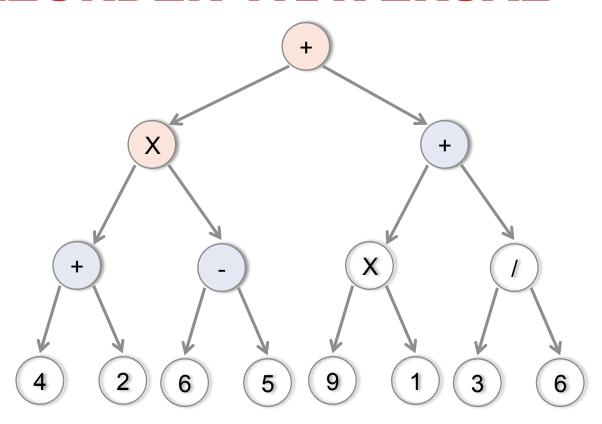
Process the node and then add children (right then left)

Stack:

X | +

Output:

+

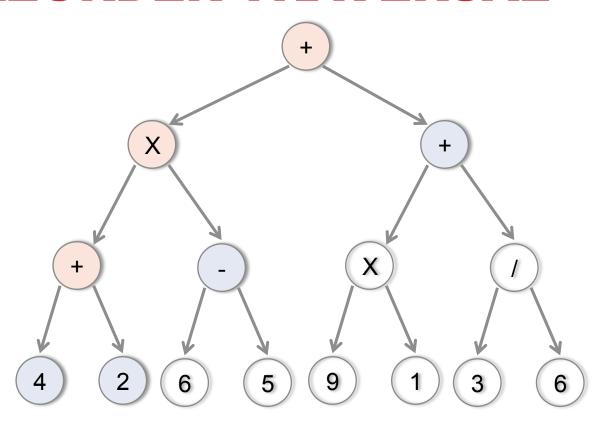


Process the node and then add children (right then left)

Stack:

Output:

+X

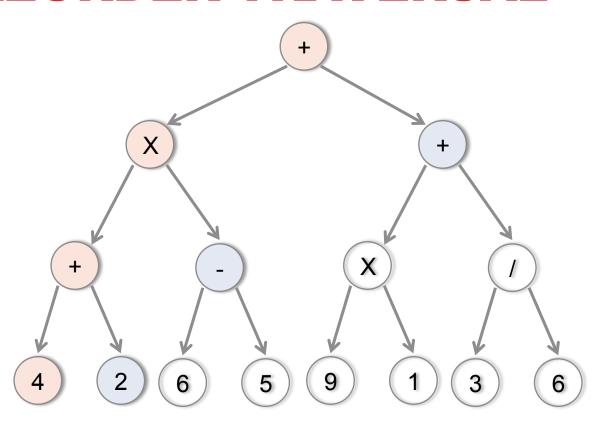


Process the node and then add children (right then left)

Stack:

Output:

+X+



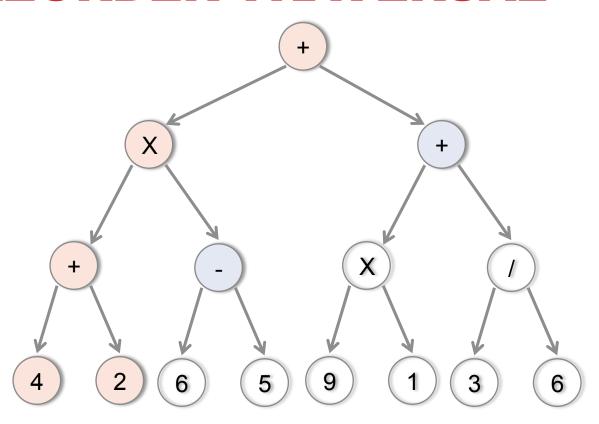
Process the node and then add children (right then left)

Stack:

2 | - | +

Output:

+X+4



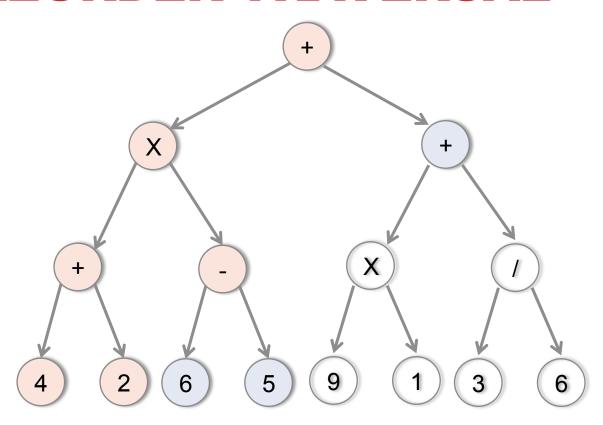
Process the node and then add children (right then left)

Stack:

- | +

Output:

+X+42



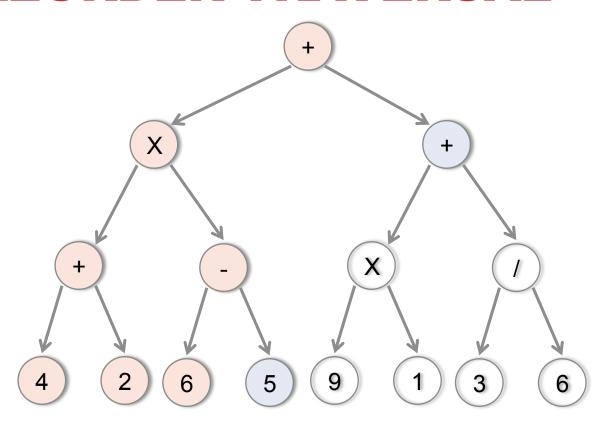
Process the node and then add children (right then left)

Stack:

6 | 5 | +

Output:

+X+42-



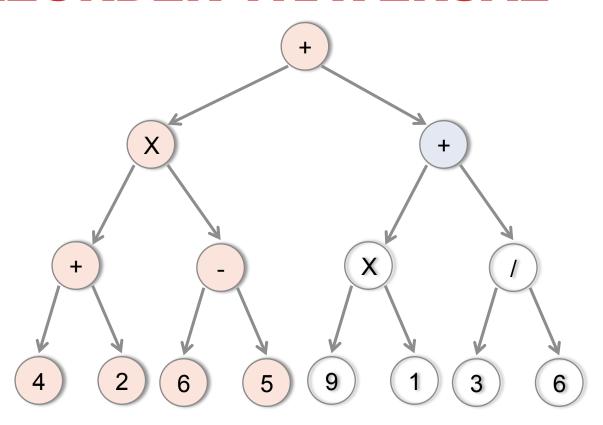
Process the node and then add children (right then left)

Stack:

5 | +

Output:

+X+42-6



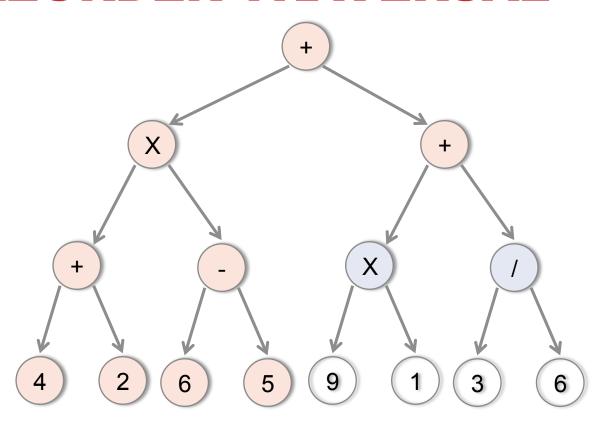
Process the node and then add children (right then left)

Stack:

+

Output:

+X+42-65

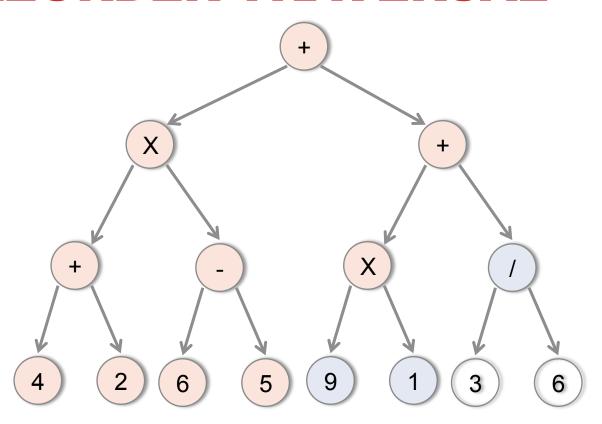


Process the node and then add children (right then left)

Stack: X | /

Output:

+X+42-65+



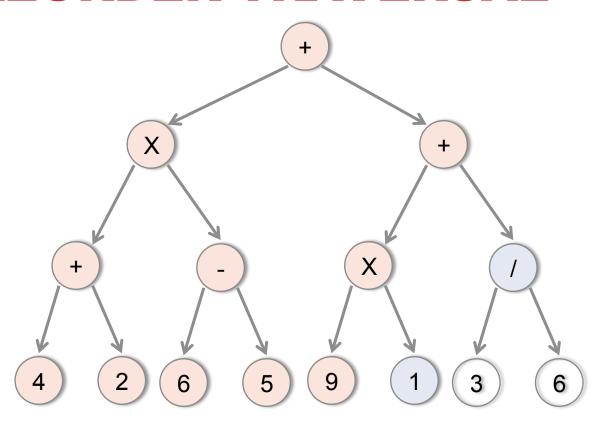
Process the node and then add children (right then left)

Stack:

9 | 1 | /

Output:

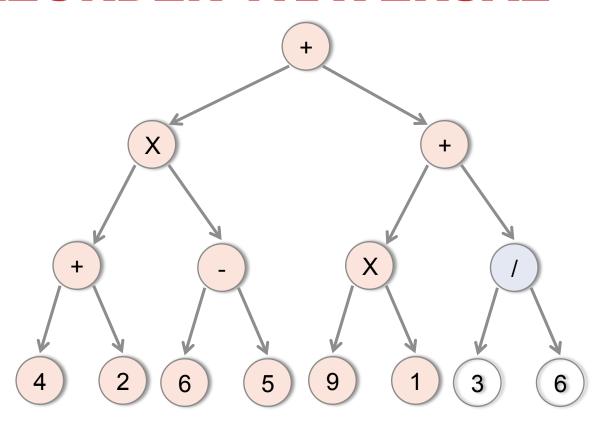
+X+42-65+X



Process the node and then add children (right then left)

Stack: 1 | /

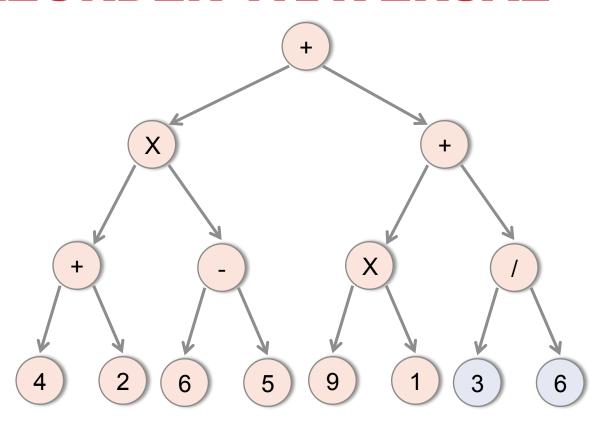
Output: | +X+42-65+X9



Process the node and then add children (right then left)

Stack: /

Output: | +X+42-65+X91



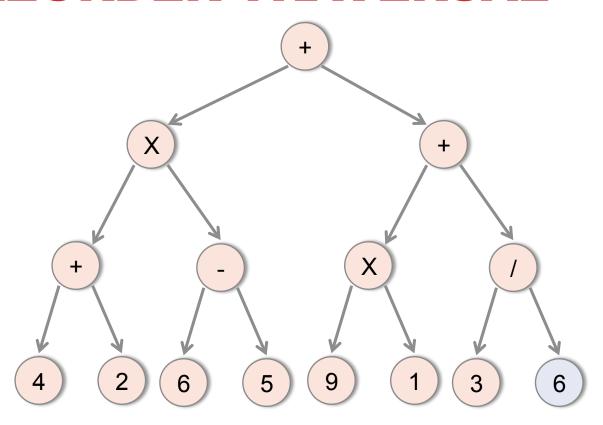
Process the node and then add children (right then left)

Stack:

3 | 6

Output:

+X+42-65+X91/



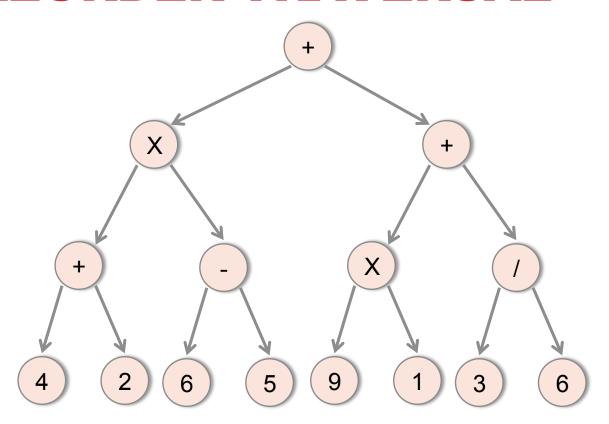
Process the node and then add children (right then left)

Stack:

6

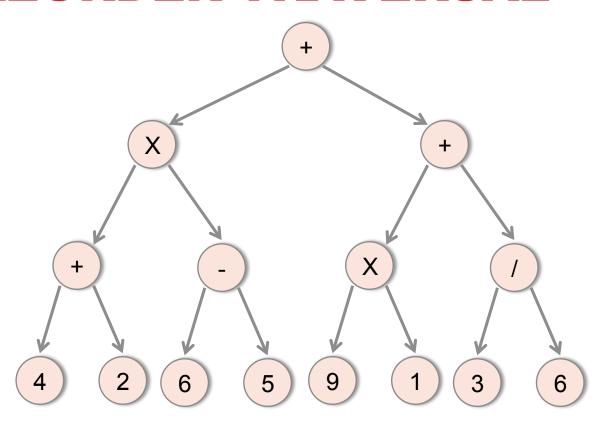
Output:

+X+42-65+X91/3



Process the node and then add children (right then left)

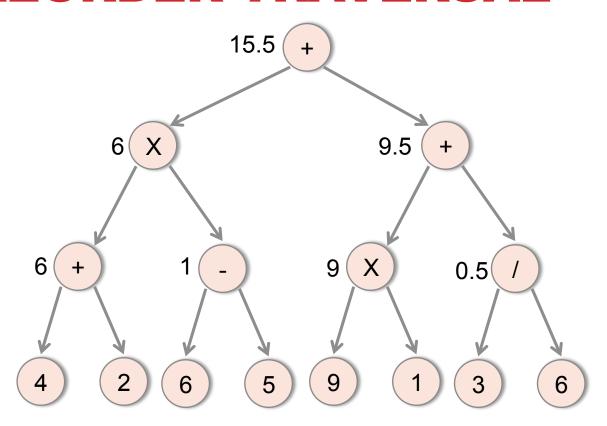
Stack:	
Output:	+X+42-65+X91/36



What does this evaluate to?

Stack:

Output: | +X+42-65+X91/36



What does this evaluate to?

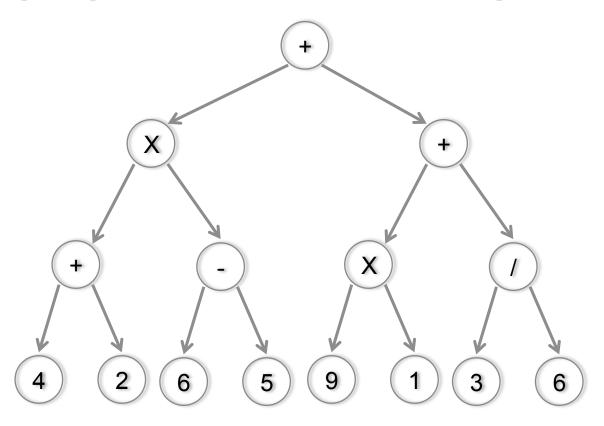
Stack:

Output:

+X+42-65+X91/36

- Knowing the rule of preorder, is that string ambiguous?
 - +X+42-65+X91/36
- Given that preorder traversal is DFS with ordering:
 - Process, Left, Right
- What string results from postorder?
 - Left Right Process?

POSTORDER TRAVERSAL



POSTORDER TRAVERSAL

- Pre-order
 - +X+42-65+X91/36
- Post-order
 - 42+65-X91X36/++

POSTORDER TRAVERSAL

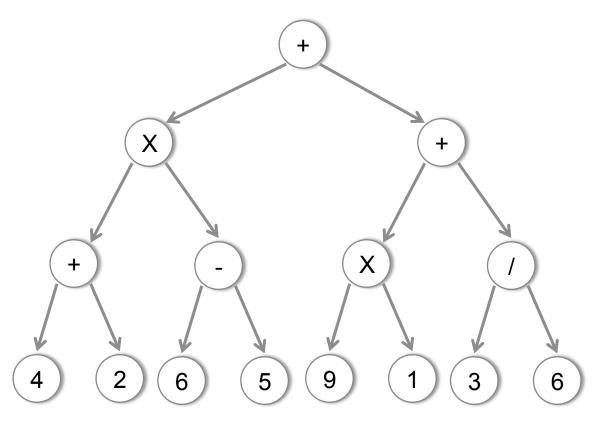
- Pre-order (Polish Notation)
 - +X+42-65+X91/36
- Post-order (Reverse Polish Notation)
 - 42+65-X91X36/++

POSTORDER TRAVERSAL

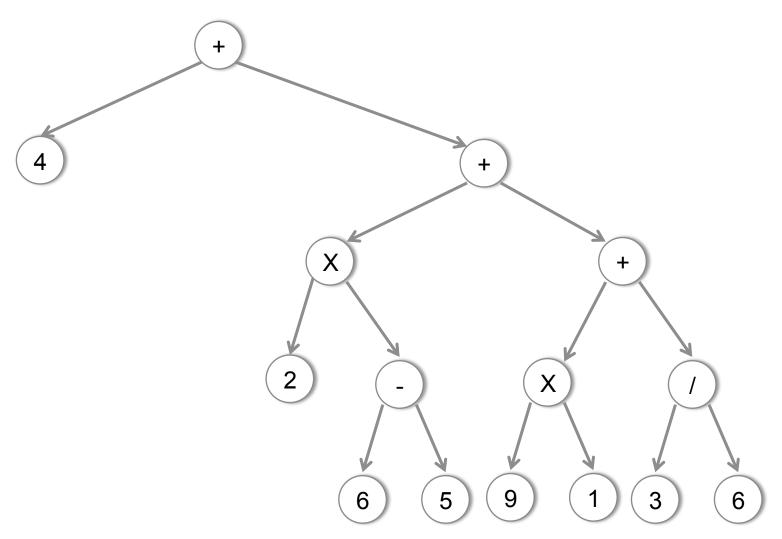
- Pre-order (Polish Notation)
 - +X+42-65+X91/36
- Post-order (Reverse Polish Notation)
 - 42+65-X91X36/++
- These are unambiguous strings

POSTORDER TRAVERSAL

- Pre-order (Polish Notation)
 - +X+42-65+X91/36
- Post-order (Reverse Polish Notation)
 - 42+65-X91X36/++
- These are unambiguous strings
- What about the final ordering?
 - Left, Process, Right?

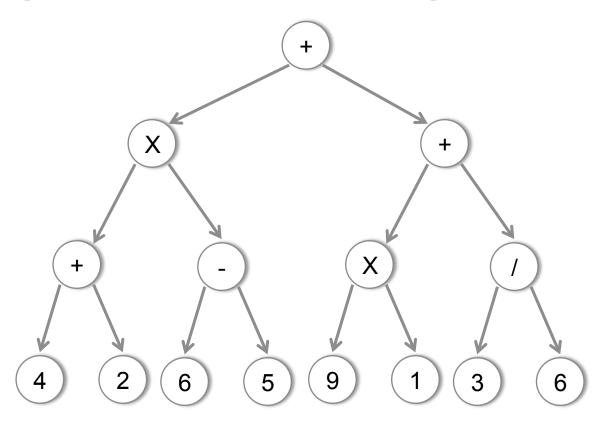


- In-order
 - 4+2X6-5+9X1+3/6
- What is the problem here?



TRAVERSALS

- In-order
 - 4+2X6-5+9X1+3/6
- What is the problem here?
 - There are multiple trees!
- In order returns the left-to-right sorted order
 - In-order traversal of a BST is sorted result

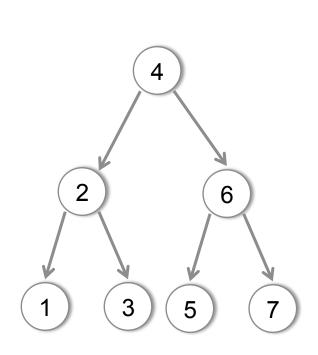


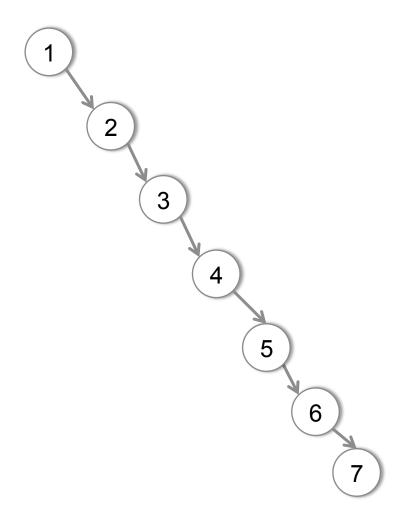
4+2X6-5+9X1+3/6

TRAVERSALS

- Pre-order and post-order are unambiguous, why?
 - They can only represent one tree because we can distinguish parents from leaves
 - Parents are operators and leaves are numbers
 - If they are all numbers, the multiple trees represent the multiple ways of storing the data

 If the same data can be represented multiple ways, what is best?

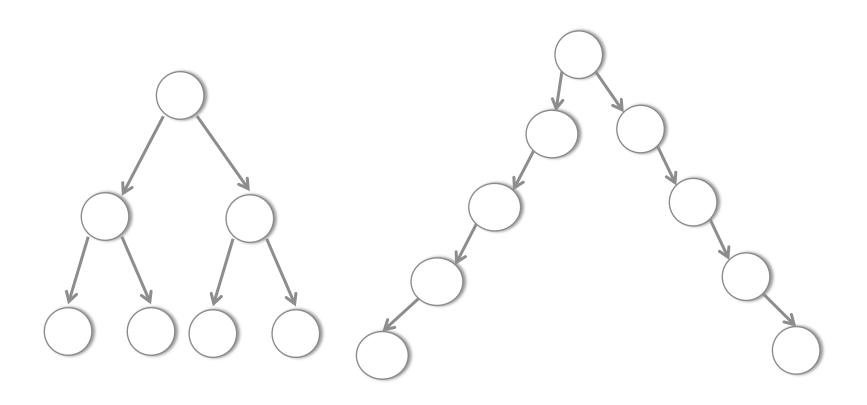




- Height is key for how fast functions on our tree are!
 - If we can structure the same data two different ways, we want to choose the better one.
 - Balanced is better for BSTs
 - Can we enforce balance?

Balance

- How can we define balance?
- Abs(height(left) height(right))
- If the heights of the left and right trees are balanced, the tree is balanced.
- Anything wrong with this?



- Not enough for the root to be balanced!
- All nodes must be balanced!
- Ideally, our "balance" property will say:
 - For all nodes in the tree, height(left) = height(right)
 - What is the problem with this?
 - Not always enforceable!

- Consider adding an element to a tree.
 - When the tree is empty, it is balanced
- We add one element
 - Height(left) = height(right) = 0
- Add another element
 - Oh no! There is no way to enforce balance!

- New property
 - If Abs(height(left) height(right)) is balance
 - We can only enforce if this is <=1
 - That is, the height left and right subtrees can differ by at most one
 - Still must preserve this for every node!
- This is the AVL property
- AVL Trees are Binary Search Trees that have the AVL property
 - They have worst case O(log n) find!

NEXT CLASS

AVL Trees

- Prove that they have O(log n) height
- Come up with implementations for insert and delete
- Want to get O(1) time for these, ideally