
CSE 373
APRIL 17TH – TREE BALANCE AND AVL

ASSORTED MINUTIAE
•  HW3 due Wednesday

•  Double check submissions
•  Use binary search for SADict

•  Midterm text Friday
•  Review in Class on Wednesday

•  Testing Advice
•  Empty and New are different edge cases
•  HW1 regrade

TODAY’S LECTURE
•  Tree traversals

•  Memory Allocation
•  Traversal ordering

•  Tree Balance
•  Improving on worst case time for trees

REVIEW

REVIEW
•  Breadth First Search

•  Enqueue the root
•  While the queue has elements

•  Dequeue
•  Process
•  Enqueue children

•  How much memory does this take?

SEARCH MEMORY USE

•  When does the queue have the most elements?

SEARCH MEMORY USE

•  At the widest point in the traversal
•  How many elements is this?

SEARCH MEMORY USE
•  Breadth First Search

•  In a perfect tree (where every row is
complete) of size n, how many elements
are in the last row?

•  ceiling(N/2), this is important to know!
•  O(n) memory usage!

SEARCH MEMORY USE
•  What about depth first search?

•  When does the stack have the most
elements on it?

SEARCH MEMORY USE

•  When does the stack have the most elements?
•  When it’s at the bottom

SEARCH MEMORY USE
•  How many elements are in the stack in

this worst case?
•  The height of the tree, O(n) if the tree is one-

sided, but O(log n) if the tree is balanced
•  We will discuss balance later
•  Classic exam question! Consider memory

AND execution times

REVIEW
•  Depth First Search

•  Iterative and Recursive options
•  Consider the recursive approach we

discussed in class

REVIEW
•  Ordering

•  What is the difference between these three
implementations

•  Process; DFS(left); DFS(right)
•  DFS(left); Process; DFS(right)
•  DFS(left); DFS(right); Process

•  How does this impact the final output?

REVIEW
•  Ordering

•  Three traversal types
•  Pre-order
•  In-order
•  Post-order

•  Instruction (Parse) trees

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output:
Stack:

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output:
Stack: + |

Add the root to the stack

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +
Stack: X | +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X
Stack: + | - | +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+
Stack: 4 | 2 | - | +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+4
Stack: 2 | - | +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42
Stack: - | +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-
Stack: 6 | 5 | +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-6
Stack: 5 | +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65
Stack: +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+
Stack: X | /

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X
Stack: 9 | 1 | /

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X9
Stack: 1 | /

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X91
Stack: /

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X91/
Stack: 3 | 6

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X91/3
Stack: 6

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X91/36
Stack:

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X91/36
Stack:

What does this evaluate to?

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X91/36
Stack:

What does this evaluate to?

6 1

6

9 0.5

9.5

15.5

PREORDER TRAVERSAL
•  Knowing the rule of preorder, is that

string ambiguous?
•  +X+42-65+X91/36

•  Given that preorder traversal is DFS with
ordering:
•  Process, Left, Right

•  What string results from postorder?
•  Left Right Process?

POSTORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

POSTORDER TRAVERSAL
•  Pre-order

•  +X+42-65+X91/36
•  Post-order

•  42+65-X91X36/++

POSTORDER TRAVERSAL
•  Pre-order (Polish Notation)

•  +X+42-65+X91/36
•  Post-order (Reverse Polish Notation)

•  42+65-X91X36/++

POSTORDER TRAVERSAL
•  Pre-order (Polish Notation)

•  +X+42-65+X91/36
•  Post-order (Reverse Polish Notation)

•  42+65-X91X36/++
•  These are unambiguous strings

POSTORDER TRAVERSAL
•  Pre-order (Polish Notation)

•  +X+42-65+X91/36
•  Post-order (Reverse Polish Notation)

•  42+65-X91X36/++
•  These are unambiguous strings
•  What about the final ordering?

•  Left, Process, Right?

IN-ORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

IN-ORDER TRAVERSAL
•  In-order

•  4+2X6-5+9X1+3/6
•  What is the problem here?

IN-ORDER TRAVERSAL

+

X

+

4

2 -

6 5

+

X

9 1

/

3 6

TRAVERSALS
•  In-order

•  4+2X6-5+9X1+3/6
•  What is the problem here?

•  There are multiple trees!
•  In order returns the left-to-right sorted

order
•  In-order traversal of a BST is sorted result

IN-ORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

4+2X6-5+9X1+3/6

TRAVERSALS
•  Pre-order and post-order are

unambiguous, why?
•  They can only represent one tree

because we can distinguish parents from
leaves

•  Parents are operators and leaves are
numbers

•  If they are all numbers, the multiple trees
represent the multiple ways of storing the
data

BALANCE AND HEIGHT
•  If the same data can be represented

multiple ways, what is best?

BALANCE AND HEIGHT

1

4

2

1 3

6

5 7

2

6

7

3

5

4

BALANCE AND HEIGHT
•  Height is key for how fast functions on

our tree are!
•  If we can structure the same data two

different ways, we want to choose the better
one.

•  Balanced is better for BSTs
•  Can we enforce balance?

BALANCE AND HEIGHT
•  Balance

•  How can we define balance?
•  Abs(height(left) – height(right))
•  If the heights of the left and right trees are

balanced, the tree is balanced.
•  Anything wrong with this?

BALANCE AND HEIGHT

BALANCE AND HEIGHT
•  Not enough for the root to be balanced!
•  All nodes must be balanced!
•  Ideally, our “balance” property will say:

•  For all nodes in the tree, height(left) =
height(right)

•  What is the problem with this?
•  Not always enforceable!

BALANCE AND HEIGHT
•  Consider adding an element to a tree.

•  When the tree is empty, it is balanced
•  We add one element

•  Height(left) = height(right) = 0
•  Add another element

•  Oh no! There is no way to enforce balance!

BALANCE AND HEIGHT
•  New property

•  If Abs(height(left) – height(right)) is balance
•  We can only enforce if this is <=1
•  That is, the height left and right subtrees can

differ by at most one
•  Still must preserve this for every node!

•  This is the AVL property
•  AVL Trees are Binary Search Trees that have the

AVL property
•  They have worst case O(log n) find!

NEXT CLASS
•  AVL Trees

•  Prove that they have O(log n) height
•  Come up with implementations for insert and

delete
•  Want to get O(1) time for these, ideally

