
CSE 373: Homework 5
Dijkstra’s Algorithm

Code due: May 17th, 11:59 PM to Canvas

Writeup due: May 19th: 11:59 PM

Introduction

For this assignment, you will use your graph representation from HW4 to implement Di-

jkstra’s algorithm for finding shortest paths. You do not have to implement Dijkstra’a

algorithm exactly as specificied in class, with the exact runtime specified in class, see the

description below for more information.

As with HW4, you may use anything in the Java standard collections (or anything else

in the standard library) for any part of this assignment. Take a look at the Java API as

you are thinking about your solutions. At the very least, look at the Collection and List

interfaces to see what operations are allowable on them and what classes implement those

interfaces.

1 Provided Files

Copy your old files from HW4 to the new project

The following new files are provided:

• Path.java: Class with two fields for returning the result of a shortest-path computa-

tion. Do not modify

• FindPaths.java: A client of the graph interface: Needs small additions

• Edge.java: Edge Class: You may add to this if you want

• vertex.txt and edge.txt an example graph in the correct input format

You will also need to add a new method to your MyGraph.java implementation from HW4.

You will need to add and implement the additional method public Path shortestPath(Vertex

a, Vertex b). You can copy and paste the method header and comments from the skeleton

code HW5 MyGraph.java. The name of this file is HW5 MyGraph.java, only so you don’t

1



accidentally overwrite your MyGraph.java from HW4 when downloading this file. You only

need this file to copy and paste the method header for shortestPath. You should still be

implementing a graph called MyGraph and turn in a file at the end called MyGraph.java

You do not need to re-implement all of the other methods, you can use your MyGraph im-

plementation from HW4. However, you may modify any of the code you submitted for HW4

in your HW5 MyGraph file.

2 Functionality

In this the assignment, you will use your graph from HW4 to compute shortest paths. The

MyGraph class has a method shortestPath you should implement to return the lowest-cost

path from its first argument to its second argument.

Return a Path object as follows:

• If there is no path, return null.

• If the start and end vertex are equal, return a path containing one vertex and a cost

of 0.

• Otherwise, the path will contain at least two vertices – the start and end vertices and

any other vertices along the lowest-cost path. The vertices should be in the order they

appear on the path.

Because you know the graph contains no negative-weight edges, Dijkstra’s algorithm is what

you should implement. Additional implementation notes::

• One convenient way to represent infinity is with Integer.MAX VALUE.

• You definitely need to be careful to use equals instead of == to compare Vertex objects.

The way the FindPaths class works (see below) is to create multiple Vertex objects for

the same graph vertex as it reads input files. You may want to refer to your old notes

on the equals method from CSE143. Remember that equals lets us compare values

(e.g. do two Vertex objects have the same label) as opposed to just checking if two

things refer to the exact same object.

The program in FindPaths.java is mostly provided to you. When the program begins

execution, it reads two data files and creates a representation of the graph. It then prints

out the graph’s vertices and edges, which can be helpful for debugging to help ensure that

the graph has been read and stored properly. Once the graph has been built, the program

2



loops repeatedly and allows the user to ask shortest-path questions by entering two vertex

names. The part you need to add is to take these vertex names, call shortestPath, and print

out the result. Your output should be as follows:

• If the start and end vertices are X and Y, first print a line

Shortest path from X to Y:

• If there is no path from the start to end vertex, print exactly one more line

does not exist

• Else print exactly two more lines.

– On the first additional line, print the path with vertices separated by spaces. For

example, you might print

X Foo Bar Baz Y

– On the second additional line, print the cost of the path (i.e., just a single number).

The FindPaths code expects two input files in a particular format. The names of the files

are passed as command-line arguments. The provided files vertex.txt and edge.txt have the

right format to serve as one (small) example data set where the vertices are 3-letter airport

codes. Here is the file format:

• The file of vertices (the first argument to the program) has one line per vertex and

each line contains a string with the name of a vertex

• The file of edges (the second argument to the program) has three lines per directed

edge (so lines 1-3 describe the first edge, lines 4-6 describe the second edge, etc.) The

first line gives the source vertex. The second line gives the destination vertex. The

third line is a string of digits that give the weight of the edge (this line should be

converted to a number to be stored in the graph).

Note data files represent directed graphs, so if there is an edge from A to B there may or

may not be an edge from B to A. Moreover, if there is an edge from A to B and an edge

from B to A, the edges may or may not have the same weight.

Feel free to add additional public functionality that you think would be useful for a client.

There might be some redundant code between your public methods; it might help to make

some private helper methods to clean up your code.

3



3 Writeup

Answer the following questions thoroughly and completely.

1. Topological Sort: Determine a topological ordering for the following directed acyclic

graph (DAG). Show your work by comupting the in-degree value of each vertex and

keeping track of the vertices with in-degree of 0 in a queue.

4



2. Minimum Spanning Trees: Use the following graph for both of the following mini-

mum spanning tree algorithms.

(a) Build a minimum spanning tree for the graph using Kruskals algorithm. Number

each edge according to when it is entered into the minimum spanning tree. The

first edge will get number 1, etc. Show the ordering of the edges you consider by

showing the state of the pending set of edges to consider.

(b) Now build a minimum spanning tree for the graph using Prims algorithm, starting

with vertex A. Again, number each edge according to when it is entered into the

set of edges. The first edge will get number 1, etc. Show the partial state in a

table keeping track of known, cost, and path similar to the lecture slides.

3. Dijkstra’s and Negative Edges:

(a) If there is more than one minimum cost path from v to w, will Dijkstras algorithm

always find the path with the fewest edges? If not, explain in a few sentences how

to modify Dijkstras algorithm so that if there is more than one minimum path

from v to w, a path with the fewest edges is chosen. Assume no negative weight

edges or negative weight cycles.

5



(b) Give an example where Dijkstras algorithm gives the wrong answer in the presence

of a negative cost edge but no negative-cost cycles. Explain briefly why Dijkstras

algorithm fails on your example. The example need not be complex; it is possible

to demonstrate the point using as few as 3 vertices.

(c) Suppose you are given a graph that has negative-cost edges but no negative-

cost cycles. Consider the following strategy to find shortest paths in this graph:

Uniformly add a constant k to the cost of every edge, so that all costs become

non-negative, then run Dijkstras algorithm and return that result with the edge

costs reverted back to their original values (i.e., with k subtracted).

• Give an example where this technique fails (Dijkstras would not find what is

actually the shortest path) and explain why it fails.

• Give a general explanation as to why this technique does not work. Think

about your example and why the original least cost path is no longer the least

cost path after adding k.

4. Describe how you tested your shortestPath method. Explain any difficulties in im-

plementation you may have experienced and how testing helped find the problem, if

applicable

Deliverables

For this assignment, there will be two submissions on Canvas.

• Part 1 consists of a zip of your FindPaths, Edge, Vertex and MyGraph classes.

• Part 2 is the pdf of the writeup. Make sure all questions are answered.

6


