CSE 373: Homework 1

Queues and Testing
Due: April 5th, 11:59 PM to Canvas

Introduction

This homework will give you an opportunity to implement the Queue ADT over a linked
list data structure. Additionally, it will introduce you to basic concepts of behavior testing
and debugging. This will be a good starting point for the course and to measure how much
material from 143 you may need to review. To this end, only part one should be a review
for you. Part 2 involves new concepts that we don’t expect you to remember from 143.
However, if you feel like Part 1 is giving you unusual difficulty, please come to office hours
and the optional 143 review session to make sure you are up to speed before the quarter

begins.

1 Implement a Queue

In this section, you will complete and implementation of a linked-list based queue and you
will test to verify that the queue behaves correctly. Since you are implementing and testing
this queue in parallel, it is an example of white box testing which we discussed in class. While

testing, you have full understanding of how your queue is supposed to work.

You are given some skeleton code (ListQueue. java) to start your work. Both of the files in
this part should be edited by you. While you are given some leeway in the implementation,
the queue must be implemented over a linked list and you may not use the Java LinkedList
for this purpose. You must implement the private class Node in your application of the
list. Your queue must support the functions: enqueue(String tolInput), dequeue() and

front (). These are indicated in the given code.

Your implementation will also need some test code. In the QueueTest. java class, imple-
ment tests which compare your performance to the Java library implementation (which has
already been imported and instantiated for you to use). At a minimum, you should demon-
strate testing of three situations: empty, one element and many elements (at least 10). Each
of the three tests should demonstrate that your implementation matches the behavior of the

Queue ADT and the Java library implementation



Given files

e ListQueue. java: This is the skeleton code for your implementation of a linked list
queue. Its implementation is a large portion of part 1. When editing the code, do not

import any Java libraries, but you may use class variables as needed.

e QueueTest.java: This is a basic file where you will conduct testing of your implemen-
tation of ListQueue. You may edit the code and use Java’s reference libraries in your

tests.

To do

Implement the following private class:

e Node : A private class of ListQueue.java: Implement the Node class so that it is able
to serve as the linked list in your implementation. Remember that linked list nodes

store data and a pointer to another node. It will also need a constructor.

Implement the following functions in the ListQueue. java file. You may create class variables

in ListQueue as necessary:

e public void enqueue(String toInput): This function should take the string toInput
and insert it at the back of the queue. This will need to manipulate instances of the

private Node class.

e public String dequeue(): This function returns the first item in the queue and
removes that element from the queue. If the queue is empty, dequeue () should return

null.

e public String front(): This function returns the first item in the queue while keep-
ing that item in the queue (preserving its place). If the queue is empty, front () should

return null
Implement a test suite for your implementation of ListQueue:

e boolean testEmpty(ListQueue yourQueue, JavaQueue correctQueue): This func-
tion should return true if the ListQQueue implementation matches the JavaQueue im-

plementation when both queues are empty. Test all three functions.

e boolean testOne(ListQueue yourQueue, JavaQueue correctQueue): This function
should return true if the ListQueue implementation matches the JavaQueue implemen-

tation when both queues have one item in them. Test all three functions.



® boolean testMany(ListQueue yourQueue, JavaQueue correctQueue): This func-
tion should return true if the ListQueue implementation matches the JavaQueue im-
plementation when both queues have many items in them. Test all three functions
in at least two ways (i.e. you should run the tests twice with a different set of many

items)

Write up

In the write up for this part, answer two questions.

1. Why did you choose your particular tests in the QueueTest. java file? For testEmpty
and testOne, a couple sentences will do. For testMany, explain why you think some

implementations might fail those tests.

2. After running your tests on your code, how confident are you that your implementation
is correct? Explain why you think your test cases are sufficient, or alternately explain
what additional tests might be prudent. These explanations should be at a high level

and do not require any implementation.

Part 1 Deliverables

e Queue.zip: This zip should contain only your ListQueue. java and QueueTest. java.

Do not send your class files. Submit this to the HW1P1-Code submission on Canvas.

e PartiWriteup.pdf: This pdf should contain all of the information from the write
up section above. Submit this to the HW1P1-Writeup submission on Canvas. This

submission can either be a typed submission or a scanned copy of neatly written work.

2 Testing queues

This part of the assignment tests your ability to perform simple black box tests. You are
given five .class files which are all incorrect implementations of the Queue ADT. The are
ordered 1 through 5, in a rough order of how difficult it should be to find errors in the code.
You are given a testSuite which will read in text files (that you have edited) to test sequences
of enqueues and dequeues of the 5 implementations against the correct Java implementation.
The code portion of this part only requires one sequence for each of the 5 implementations

where its output differs from the implementation.



The Test Suite

The test package runs through TestSuite. java. Do not modify this file. Make sure that
the five . txt files are in the same folder (or project if you're using Eclipse) as TestSuite. java.
Also, the five .class files should also be in this folder (or in the bin folder of your project
in Eclipse. Each of the five .txt files corresponds to the .class implementation with the

same number.

To enter your sequence: edit the appropriate .txt file. In that file, each line cor-
responds to an operation that the test suite will run on the java implementation and the
implementation in question. The operations will be executed in order, from top to bottom.

There are three allowable operations that you may put in this file:

e enqueue STRING TO_INPUT: This will input the string STRING_TO_INPUT into both im-

plementations.

e dequeue EXPECTED_STRING: This will perform a dequeue on both implementations. It

will then check two things, in order:

1. The EXPECTED_STRING must match what comes off the correct Java reference
queue. If it does not, the test will terminate as a fail. No explanatory message

will be given.

2. If the two implementations have different results from the dequeue (and the above
condition is met), then you have found a sequence that demonstrates a flaw in

the implementation and the test will terminate and indicate as passed.

e dequeue #: In this implementation # is a reserved character that indicates the ex-
pected output is null. Because of this, you should note that your input strings should

not contain #s. Other than this, it follows the same rules as dequeue above.

Given files

e TestQueue. java: An interface file. Classes which implement TestQueue must have the
public void enqueue(String toInput) and public String dequeue() functions

supported. All five of the test implementations will implement this interface.

e The five .class files. TestQueuel, TestQueue2, TestQueued, TestQueued, TestQueued.
These are the compiled implementations. Each of these is flawed in some way. They
are ordered in the rough order of their difficulty, with 1 being the easiest. They can

be either array or linked list implementations

4



e Node.class This is the node class used by any linked list implementations. While
somewhat bad form, it was removed from the classes so that students could not identify
which were linked list and which were array implementations. You may not modify

or replace this file

e TestSuite. java: This is the code that will read in your 5 text files and execute their
commands. Do not edit this file. Editing the .txt files is sufficient to change the
behavior of TestSuite. Running this will throw errors if the text files are in the wrong

place or if an incorrect command is inserted.

To do (Code)

Edit the five .txt files so that their sequence of commands reveals an error in their corre-
sponding Queue implementation. So long as you do not edit any files but the .txt files,

passing the 5 tests will earn you full credit for the coding portion of part two.

Write up

For each of your 5 tests, once you have found a sequence that produces an error, describe
why that implementation is incorrect. Here, a simple description of the types of sequences
which cause an error is sufficient. Additionally, propose some ideas about what might be
wrong with the implementation. These ideas can be high level, it is very difficult to isolate

the exact problem in black box testing.

Part 2 Deliverables

e Tests.zip: This zip should contain all five of your test files (testl.txt, test2.txt,
test3.txt, testd.txt and test5.txt). No other files are necessary in the submis-
sion for this part. Your grade for this portion will be 5 points for each of the 5 tests

passed in TestSuite. java

e Part2Writeup.pdf: This pdf should contain all of the information from the write
up section above. Submit this to the HW1P2-Writeup submission on Canvas. This

submission can either be a typed submission or a scanned copy of neatly written work.



