
CSE 373 Final Review
June 2, 2017

James Wang, Justin Sievers, Kimberly Bautista

Exam Info

- Tuesday, Jun 6
- 2:30 – 4:20 pm
- SMI 120

Exam Topics

● Stacks and Queues

● Heaps/Priority Queues

● Algorithm Analysis

● Dictionaries

● BSTs, AVL Trees

● Hashing

● Graphs, Union Find

● Sorting

● Algorithm Design

15 mins

Review of Pre-Midterm
Material: AVL/Hash
Table

20 mins

Graph Searching
Algorithm and MST

20 mins

Sorting Algorithms

20 mins

Big-O and Recurrences

15 mins

Algorithm Design

Pre-Midterm Material

AVL Tree

Quick Review:

- AVL is a BST that has additional
constraints, aka AVL property

- AVL Property: For each node, the left and
right subtrees height cannot differ by more
than 1

Easy Challenge:

Insert [10,9,8,7,6,5,4,3,2,1] into an AVL and show
the final tree!

AVL Solution

Hash Table

Quick Review:

- Hash Table: Buckets of elements resulting
from a Hash Function

- Linear Probing, when the hashing bucket is
full, move to next available bucket

- Quadratic Probing: When the hashing
bucket is full, find next bucket
quadratically

- Separate Chaining: Chain elements into
same bucket

Easy Challenge:

1. Explain the importance of load factor
when resolving collision using linear or
quadratic probing?

2. What is the worst case when using
separate chaining? How can this be
resolved?

Hash Table Solution

1. Load factor is an easy way to determine the
likelihood of clustering, resulting in slow
runtime. Also, for quadratic probing, a load
factor over .5 can result in failures to insert.

In terms of implementing a hash table, you can
look at the current load factor and resize the
array if it’s higher than the ideal one

2. In the worst case, all of the elements will be in
one bucket. If buckets are linked lists, then find
will be O(n) and insert can be O(1). If buckets
are AVL trees, find and insert are O(log(n)).

When this worst case happens, rehashing with a
new hash function is extremely likely to fix the
problem.

Graph Algorithms

Graphs

Quick Review

- Make sure you understand the difference
between unweighted/weighted graph and
directed/undirected graph

- Dijkstra’s Algorithm: guarantee to find the
shortest path given a graph with
nonnegative weights.

Graphs Solution

Starting node -> A

A B C D E F G

Visited? x x

Shortest
Path from
A

0 1

From? A A

Graphs Solution

Starting node -> A

A B C D E F G

Visited? x x x

Shortest
Path from
A

0 1 2

From? A A C

Graphs Solution

Starting node -> A

A B C D E F G

Visited? x x x x

Shortest
Path from
A

0 1 2 2

From? A A C C

Graphs Solution

Starting node -> A

A B C D E F G

Visited? x x x x x

Shortest
Path from
A

0 1 2 3 2

From? A A C G C

Graphs Solution

Starting node -> A

A B C D E F G

Visited? x x x x x x

Shortest
Path from
A

0 1 2 3 4 2

From? A A C G E C

MST

Quick Review

- Union-Find ADT: A data structure that
keeps track of elements in disjoint sets.

- Prim’s Algorithm: An algorithm that finds
MSTs by modifying Dijkstra’s to only
account for the single edge cost, not the
total path cost when connecting a node.

- Kruskal’s Algorithm: An algorithm to find
MSTs by traversing the edges and using
the Union-Find ADT.

MST Solution

MST Solution (Cont.)

MST Solution (Cont.)

MST Solution (Cont.)

MST Solution (Cont.)

MST Solution (Cont.)

MST Solution (Cont.)

MST Solution (Cont.)

MST Solution (Cont.)

MST Solution (Cont.)

MST Solution (Cont.)

MST Solution (Cont.)

MST Solution (Cont.)

MST Solution (Cont.)

MST Solution (Cont.)

Edges used in MST (in the order they were
added):
{F, I}, {H, K}, {D, E}, {D, G}, {B, C}, {I, L}, {A, B},
{G, H}, {C, F}, {G, J}, {B, E}

Along the way, {J, K} would have created a cycle
that goes J->K->H->G->J, so it was not added.
Any edges examined after {B, E} would have also
created cycles.

Sorting Algorithms

Comparison Sorts

Quick Review

- Quick Sort
- Selection Sort
- Insertion Sort
- Merge Sort
- Heap Sort

Concept Check:

- Given a list of 10 numbers, say if all I want
to do is to get the top 3 sorted elements,
which algorithm can achieve this in the
most effective manner?

Comparison Sort Solutions

Solution 1:
Heap sort would be an appropriate sorting algorithm! Since as you place everything into a heap, you’ll
be able to just take out the first k element, thus achieving what the problem is asking!

Solution 2:

Selection sort would be also be another appropriate answer here, since as mentioned in lecture, it is an
interruptible sorting algorithm. Since after you do the first k-pass of selection sort, the first k elements
would be the sorted elements that you want

Non-comparison-based Sorts

Quick Review:

- Radix Sort
- Bucket Sort

Simple Problem:

Use Radix Sort to sort the following problem.
You only need to do the first two passes

Non-comparison-based Sort Solution

Big-O and Recurrences

Analysis Review

Quick review:

-O(k) is an upper bound

-Ω(k) is a lower bound

-ϴ(k) is O(k) and Ω(k): a “tight” bound.

-Recurrences are recursive definitions of
functions, usually of their runtime

Sample problem: Find a tight big O bound on the
following recurrences.
1. T(n) = {

1 if n <= 1
T(n-2) + 100 otherwise

}

2. T(n) = {
1 if n <= 1
3T(n/2) + 1 otherwise

}

Recurrence Solution

1. Unrolling this recurrence:

T(n) = 100 + T(n-2)
= 100 + 100 + T(n-4)
= 100 + 100 + 100 + T(n-6)
= …
=O(100(n/2) + 1) = O(n)

2. Unrolling this recurrence:
T(n) = 1 + 3T(n/2)
= 1 + 3(1 + 3T(n/4))
= 1 + 3 + 9T(n/4)
= 1 + 3 + 9 + 27T(n/4)
=

= O(3log(n))
= O(nlog(3))
Note that we can show that klog(n) = nlog(k) for all
constants k by taking the log of both sides.

Common Summations to Solve Recurrences

Method Analysis

Find a big O bound on the method shown:

public void whee(int n) {
for (int i = 1; i < n; i *=2) {

for (int j = 1; j < n; j*= 3) {
System.out.println(“WHEE!”);

}
}
for (int k = n/2; k < n; k++) {

System.out.println(“WOAH!”);
}

}

Method Analysis Solution

The two first nested loops are each
log(n), and the second outer loop will
have runtime n/2.

Thus, the algorithm is
O(log(n)log(n) + n/2) = O(n).

void whee(int n) {
for (int i = 1; i < n; i *=2) {

for (int j = 1; j < n; j*= 3) {
System.out.println(“WHEE!”);

}
}
for (int k = n/2; k < n; k++) {

System.out.println(“WOAH!”);
}

}

Algorithm Design

Algorithm Design Solution #1 (No number theory required)

How to approach this problem?

➢ Look at what’s given to you in the problem description
○ “...if two numbers are both prime and not equal to each other, then they have no common factors.”
○ “...if a number k is composite (not-prime) then it must have one factor that is at most √k. “

Algorithm Design Solution #1 (No number theory required)

How to approach this problem?

➢ Look at what’s given to you in the problem description
○ “...if two numbers are both prime and not equal to each other, then they have no common factors.”
○ “...if a number k is composite (not-prime) then it must have one factor that is at most √k. “

Algorithm Design Solution #1 (No number theory required)

Pseudocode
Suppose without loss of generality (WLOG) that i <= j → min{√i, √j} =√i

For (each integer k = 2 to k<= √i) {

If (i % k == 0) { // if k is a factor of i

// check if k or its complementary factor (made up this word) are factors of j

If (j % k == 0 || j % (i/k) == 0)

Return true

}

}

Return false // if there’s no common divisor of i and j

Algorithm Design Solution #2 (Number theory required)

Idea: Find the greatest common divisor (GCD) of i and j

The Euclidean Algorithm:

➢ This algorithm will return to you the GCD which is a common factor of i and j, so you can return true

once you find this

➢ How it works?

○ Keep subtracting the smaller number from the bigger number until both numbers i, j are equal to
each other or one of them equals 1

Euclidean Algorithm
Example: Let i = 42, and j = 105. Let’s say we already know that GCD(i,j) = 21

Now let’s test it out against the Euclidean Algorithm:

i j smaller?

42 105 i is smaller so subtract i from j

42 63 i is again smaller, so j = j - i

42 21 j is smaller, so i = i - j (Note: We don't stop
subtracting until i == j or either one of them gets to 1)

21 21 Done! i == j so the GCD is 21

Euclidean Algorithm
Example: Let i = 42, and j = 105. Let’s say we already know that GCD(i,j) = 21

Now let’s test it out against the Euclidean Algorithm:

i j smaller?

42 105 i is smaller so subtract i from j

42 63 i is again smaller, so j = j - i

42 21 j is smaller, so i = i - j (Note: We don't stop
subtracting until i == j or either one of them gets to 1)

21 21 Done! i == j so the GCD is 21

Euclidean Algorithm
Example: Let i = 42, and j = 105. Let’s say we already know that GCD(i,j) = 21

Now let’s test it out against the Euclidean Algorithm:

i j smaller?

42 105 i is smaller so subtract i from j

42 63 i is again smaller, so j = j - i

42 21 j is smaller, so i = i - j (Note: We don't stop
subtracting until i == j or either one of them gets to 1)

21 21 Done! i == j so the GCD is 21

Euclidean Algorithm
Example: Let i = 42, and j = 105. Let’s say we already know that GCD(i,j) = 21

Now let’s test it out against the Euclidean Algorithm:

i j smaller?

42 105 i is smaller so subtract i from j

42 63 i is again smaller, so j = j - i

42 21 j is smaller, so i = i - j (Note: We don't stop
subtracting until i == j or either one of them gets to 1)

21 21 Done! i == j so the GCD is 21

Algorithm Design Solution #2 (Number theory required)

Pseudocode

At each iteration, subtract the smaller number from the bigger number until both numbers i, j are
equal to each other or one of them equals 1 (This is the Euclidean Algorithm)

○ If i = 1 or j = 1 // This means that there's no GCD
Return False

○ If i == j // This means that there's a GCD
Return true

Motivation Slide - “Relax, you are here to learn!”

Before we end this review session, here’s the motivation slide!

You might not be aware, but here are the things that you’ve accomplished this quarter!

1. Learned about a variety of data structures that are commonly used in everyday life
2. Learned how to fully analyze a piece of code written by someone else
3. Learned about effective sorting algorithms
4. Started your journey to become an advanced programmer :D

As long you try your best and put in effort, you should be proud of your results!

Grades are merely a number, it does not define you as a person.

Last Minute Advice

- Make sure you bring your ID, in the event that we decide to check ID!
- If you get stuck on a problem, skip it and come back later.
- For problems that allow partial credit, you should show ALL your work!
- Look through all the problems at the beginning of the exams and do the easy ones first before

tackling the harder problems
- If you find the exam extremely difficult, don’t panic! This exam is meant to be HARD, so the

people around you problem feel the same! So you should calm down and do your best!

Additional Questions ???
If so, please come up to the front!
Thanks for coming! Good Luck :D

