Radix Sort

Use radix sort to sort the following elements, show each pass.

\[['a', 'get', 'zen', 'ah', 'row', 'rat', 'tie'] \]

\[
\begin{array}{cccccccc}
\text{a} & \text{a} \\
\text{g} \rightarrow & \text{a} & \text{g} \rightarrow & \text{a} & \text{g} \rightarrow & \text{a} & \text{g} \rightarrow & \text{a} \\
\text{e} & \text{e} \\
\text{n} & \text{n} \\
\text{r} & \text{r} \\
\text{i} & \text{i} \\
\text{e} & \text{e} \\
\text{r} & \text{r} \\
\text{w} & \text{w} \\
\text{t} & \text{t} \\
\text{z} & \text{z} \\
\end{array}
\]
Interrupting sorts

The following arrays have been interrupted in the middle of a sorting algorithm. Use your knowledge of comparison based sorting to determine which algorithm was being used on each array. Each of the following will be present exactly once: Heap Sort, Insertion Sort, Selection Sort, Merge Sort

Array:

-5 2 19 53 44 91 87 35
14 42 17 72 12 10 5 1
29 35 44 114 37 30 28 46
6 10 3 50 15 60 1 34

Sort Used:

Selection
starts w/ global sort
Heap Sort
Insertion
Merge Sort
sorted subsequence
Short answer

1. Suppose we are trying to perform a radix sort on a set of positive `java int`. Recall that the runtime of Radix sort is $O(P(B + n))$ where B is the Radix and P is the number of passes. To what extent are P and B selectable and how might differing values of n impact the selection process.

 If n is very large, we can let B be larger.

 This increases the radix, but decreases the number of passes.

2. Provide an example for each of the following or indicate why no sort exists:
 - A stable comparison sort with worst-case $O(n^2)$ runtime

 Insertion
 - A stable comparison sort with worst-case $O(n)$ runtime

 not possible, comparison sorts are $O(n \log n)$
 - A $O(n \log n)$ stable comparison sort

 merge sort ($O(n)$ memory usage, though)
 - A stable, in-place, comparison sort that runs in $O(n \log n)$ time

 not possible

 quick sort is not stable,
 merge is not in-place

 comparison $\log n$ an only the above 3
Graph Introduction

Use this graph and help from the TA to introduce our next topic: graphs.

- Identify Vertices and Edges. \(G(V,E) \)
- Discuss directed vs. undirected graphs
- Discuss weights
- What sort of information could this graph represent?

\[V = \{ A, B, C, D, E, F \} \]
\[E = \{ (A,B), (A,D), (A,C), (B,F), (C,D), (C,E), (C,G), (D,F), (E,F) \} \]

Maps, networks, traffic, genealogy, social connections.

Symmetry: if \((A,B) \) then \((B,A) \)