
CSE 373: Section 3
Analysis, Traversals and AVL

October 12th, 2017

AVL insertions

Show an AVL Tree as each of the following keys are added (in the order given). You may

ignore their corresponding values.

{1, 2, 3, 4, 5, 6, 7}

Show the tree at each step. Observe how rotations occur at different levels of the tree

Produce the BFS traversal ordering as well as pre-order, in-order and post-order traversals

of the tree

1



Asymptotic Analysis

For the following methods, determine asymptotic runtime in terms of n

1. void f1(int n){

for(int i = n; i>0;i--){

System.out.println("!");

}

}

2. int f2(int n){

if (n < 10) return n;

else if(n < 1000) return f2(n-2);

else return f2(n/2);

}

3. int f3(n){

f(n,n);

}

int f(int n,int m){

int sum = 0;

if (n <= 2) {

for(int i = 2; i < m; i=i*2){

sum++;

}

return sum;

}

else return f(n/2, m)+f(n/2, m);

}

2



Recurrences

Given the following recurrences, use any of the methods provided in class (rolling out the

recurrence, drawing a recurrence tree, master theorem) to find the tight bigO bound for the

function in terms of n. You may assume that the base case runs in constant time for all

functions.

1. T (n) = 1 + T (n/2)

2. T (n) = 15 + T (n− 1)

3. T (n) = O(1) + 2 ∗ T (n− 1)

4. T (n) = 12n + logn + 2 ∗ T (n/2)

5. T (n) = 100 + 2 ∗ T (n/2)

3



Amortized Analysis

Imagine an array implementation for a stack. Normally, resizes occur to make more room if

the array is full. If the array becomes too empty, we often resize to avoid wasting memory.

• What is the amortized runtime of pop() if the array downsizes to half its size if the

array is 1
4

full?

• Why might it be a bad decision to half the size of the array when it is 1
2

full? Consider

alternating push() and pop() sequences.

4


