CSE 373

OCTOBER 16™ - HASHING

TODAY’S LECTURE

 Hashing

TODAY’S LECTURE

 Hashing
« Basic Concept

TODAY’S LECTURE

 Hashing

« Basic Concept
 Hash functions

TODAY’S LECTURE

 Hashing

« Basic Concept
 Hash functions
* Collision Resolution

TODAY’S LECTURE

 Hashing
« Basic Concept
« Hash functions

* Collision Resolution
* Runtimes

HASHING

* Introduction

HASHING

* Introduction

» Suppose there is a set of data M

HASHING

* Introduction

» Suppose there is a set of data M

* Any data we might want to store is a
member of this set. For example, M might
be the set of all strings

HASHING

* Introduction

» Suppose there is a set of data M

* Any data we might want to store is a
member of this set. For example, M might
be the set of all strings

* There is a set of data that we actually
care about storing D, where D << M

HASHING

* Introduction

» Suppose there is a set of data M

* Any data we might want to store is a
member of this set. For example, M might
be the set of all strings

* There is a set of data that we actually
care about storing D, where D << M

* For an English Dictionary, D might be the
set of English words

HASHING

« What is our ideal data structure?

HASHING

« What is our ideal data structure?

* The data structure should use O(D)
memory

HASHING

« What is our ideal data structure?

* The data structure should use O(D)
memory

* No extra memory is allocated

HASHING

 What is our ideal data structure?
» The data structure should use O(D)
memory
* No extra memory is allocated
* The operation should run in O(1) time

HASHING

 What is our ideal data structure?
» The data structure should use O(D)
memory
* No extra memory is allocated
* The operation should run in O(1) time
* Accesses should be as fast as possible

HASHING

« What are some difficulties with this?

HASHING

« What are some difficulties with this?

* Need to know the size of D in advance or
lose memory to pointer overhead

HASHING

« What are some difficulties with this?

* Need to know the size of D in advance or
lose memory to pointer overhead

- Hard to go from M -> D in O(1) time

HASHING

* Memory: The Hash Table

HASHING

* Memory: The Hash Table

« Consider an array of size ¢ * D

HASHING

* Memory: The Hash Table

« Consider an array of size ¢ * D

« Each index in the array corresponds to some
element in M that we want to store.

HASHING
« Memory: The Hash Table

« Consider an array of size ¢ * D

« Each index in the array corresponds to some
element in M that we want to store.

* The data in D does not need any particular
ordering.

THE HASH TABLE

« How can we do this?

THE HASH TABLE

« How can we do this?
* Unsorted Array

Apple

THE HASH TABLE

« How can we do this?
* Unsorted Array

Apple

Pear

THE HASH TABLE

« How can we do this?
* Unsorted Array

Apple
Pear
Orange

THE HASH TABLE

« How can we do this?
* Unsorted Array

Apple

Pear

Orange

Durian

THE HASH TABLE

« How can we do this?
* Unsorted Array

Apple
Pear
Orange
Durian | D
Kumquat

THE HASH TABLE

 What is the problem here?

Apple

Pear

Orange

Durian

Kumquat

THE HASH TABLE

 What is the problem here?
« Takes O(D) time to find the word in the list!

Apple
Pear
Orange
Durian | D
Kumquat

THE HASH TABLE

 What is the problem here?

« Takes O(D) time to find the word in the list
« Same problem with sorted arrays!

Apple
Pear
Orange
Durian | D
Kumquat

THE HASH TABLE

« What is another solution?

Apple

Pear

Orange

Durian

Kumquat

THE HASH TABLE

« What is another solution?

Random mapping

Kumquat

Pear

Durian

Apple

Orange

THE HASH TABLE

 What’s the problem here?

Kumquat

Pear

Durian

Apple

Orange

THE HASH TABLE

 What’s the problem here?

Can'’t retrieve the random variable, O(D) search!

Kumquat
Pear

M Durian

Apple

Orange

THE HASH TABLE

 What about a pseudo-random mapping?

—>| Kumquat
> Pear

M > h(x) —>| _Durian

—> Apple

—>| QOrange

THE HASH TABLE

 What about a pseudo-random mapping?

 This is “the hash function”

—>| Kumquat
> Pear

M > h(x) —>| _Durian

—> Apple

—>| QOrange

HASH FUNCTIONS

 The Hash Function maps the large space
M to our target space D.

HASH FUNCTIONS

 The Hash Function maps the large space
M to our target space D.

« We want our hash function to do the
following:

HASH FUNCTIONS

 The Hash Function maps the large space
M to our target space D.

« We want our hash function to do the
following:

- Be repeatable: H(x) = H(x) every run

HASH FUNCTIONS

 The Hash Function maps the large space
M to our target space D.

 We want our hash function to do the
following:
- Be repeatable: H(x) = H(x) every run
* Be equally distributed: For all y,z in D,
P(H(y)) = P(H(z))
* Runin constanttime: H(x) = 0O(1)

HASH EXAMPLE

* Let’s consider an example. We want to
save 10 numbers from all possible Java
ints

HASH EXAMPLE

* Let’s consider an example. We want to
save 10 numbers from all possible Java
ints

* What is a simple hash function?

h(x)

ints

QO[NNI [WIN[(—=]O

HASH EXAMPLE

* Let’s consider an example. We want to
save 10 numbers from all possible Java
ints

« Just use the number, but we need to mod by the table size
to prevent OOB

h(x) =
key%10

ints

QO[NNI [WIN[(—=]O

HASH EXAMPLE

* Let’s insert(519) table

h(x) =
key%10

ints

QO[NNI [WIN[(—=]O

HASH EXAMPLE

* Let’s insert(519) table
* Where does it go?

h(x) =
key%10

ints

QO[NNI [WIN[(—=]O

HASH EXAMPLE

* Let’s insert(519) table

* Where does it go?
* 519%10 =

h(x) =
key%10

ints

QO[NNI [WIN[(—=]O

HASH EXAMPLE

* Let’s insert(519) table

* Where does it go?
* 5319%10=9

519] h(x) =
key%10

Olo(Nlo|u|d|lwNd(=]o

HASH EXAMPLE

* Insert(214)

214

519] h(x) =
key%10

Olo(Nlo|u|d|lwNd(=]o

HASH EXAMPLE

* Insert(214)

214

519 h(x) =
key%10 >

: 214

Olo(Nlo|u|d|lwNd(=]o

HASH EXAMPLE

* insert(1001)

0
214 1
2
519 h(x) = 3
| key%10 —>[4:214
1001 S
6
7
8
—>19: 519

HASH EXAMPLE

* insert(1001)

0
214 —> 1: 1001
2
519 h(x) = 3
| key%10 (4. 214
1001 S
6
V4
8
—>1 9: 519

HASH EXAMPLE

* |s there a problem here?

0
214 —[1. 1001
2
519 h(x) = 3
| key%10 (4. 214
1001 5
6
7
8
{9 519

HASH EXAMPLE

* |s there a problem here?
* Insert(3744)

0
214 —> 1: 1001

2

519 h(x) = 3
key%10 —>1 4. 214

1001 5

6

7

3744 3
—>1 9: 519

HASH EXAMPLE

* |s there a problem here?
* Insert(3744)

0
214 —>11: 1001

2

519 h(x) = 3
key%10 —>1 4: 214

1001 5

6

7

3744 3
—>| 9: 519

HASH EXAMPLE

* |s there a problem here?

* Insert(3744)
 This is called a collision!

0
214 —> 1: 1001

2

519 h(x) = 3
key%10 —>1 4. 214

1001 5

6

7

3744 3
—>1 9: 519

HASH FUNCTION

* In reality, good hash functions are
difficult to produce

 We want a hash that distributes our data
evenly throughout the space

HASH FUNCTION

* In reality, good hash functions are
difficult to produce

 We want a hash that distributes our data
evenly throughout the space

 Usually, our hash function returns some

integer, which must then be modded to our
table size

HASH FUNCTION

* In reality, good hash functions are
difficult to produce

 We want a hash that distributes our data
evenly throughout the space

 Usually, our hash function returns some

integer, which must then be modded to our
table size

* Needs to incorporate all the data in the keys

HASH FUNCTION

* You will not have to produce hash
functions, but you should recognize good
ones

HASH FUNCTION

* You will not have to produce hash
functions, but you should recognize good
ones

* They run in constant time

HASH FUNCTION

* You will not have to produce hash
functions, but you should recognize good
ones

* They run in constant time
» They evenly distribute the data

HASH FUNCTION

* You will not have to produce hash
functions, but you should recognize good
ones

* They run in constant time
» They evenly distribute the data
* They return an integer

HASH EXAMPLE

 How to rectify collisions?
« Think of a strategy for a few minutes

HASH EXAMPLE

 How to rectify collisions?

« Think of a strategy for a few minutes
 Possible solutions:

« Store in the next available space

HASH EXAMPLE

 How to rectify collisions?

« Think of a strategy for a few minutes
 Possible solutions:

« Store in the next available space
« Store both in the same space

HASH EXAMPLE

 How to rectify collisions?

« Think of a strategy for a few minutes
 Possible solutions:

« Store in the next available space
« Store both in the same space
* Try a different hash

HASH EXAMPLE

 How to rectify collisions?

« Think of a strategy for a few minutes
 Possible solutions:

« Store in the next available space
« Store both in the same space

* Try a different hash

* Resize the array

HASH EXAMPLE

« Consider the simplest solution

HASH EXAMPLE

« Consider the simplest solution
* Find the next available spot in the array

LINEAR PROBING

« Consider the simplest solution

* Find the next available spot in the array
* This solution is called linear probing

LINEAR PROBING

« Consider the simplest solution

* Find the next available spot in the array
* This solution is called linear probing

0
214 —>11: 1001

2

519 h(x) = 3
key%10 —>1 4: 214

1001 5

6

7

3744 3
—>| 9: 519

LINEAR PROBING

 What are the problems with this?

LINEAR PROBING

 What are the problems with this?
* How do we search for 37447

LINEAR PROBING

 What are the problems with this?

« How do we search for 37447

* Need to go to 4, and then cycle through
all of the entries until--

LINEAR PROBING

 What are the problems with this?

« How do we search for 37447

* Need to go to 4, and then cycle through
all of the entries until we find the
element or find a blank space

LINEAR PROBING

 What are the problems with this?

« How do we search for 37447

* Need to go to 4, and then cycle through
all of the entries until we find the
element or find a blank space

« What if we need to add something that
ends in 57

LINEAR PROBING

 What are the problems with this?

« How do we search for 37447

* Need to go to 4, and then cycle through
all of the entries until we find the
element or find a blank space

« What if we need to add something that
ends in 57

* |t also ends up in this problem area

LINEAR PROBING

 What are the problems with this?

« How do we search for 37447

* Need to go to 4, and then cycle through
all of the entries until we find the
element or find a blank space

« What if we need to add something that
ends in 57

* |t also ends up in this problem area
* This is called clustering

CLUSTERING

 What are the negative effects of
clustering?

CLUSTERING

 What are the negative effects of
clustering?

* If the cluster becomes too large, two things
happen:

CLUSTERING

 What are the negative effects of
clustering?

* If the cluster becomes too large, two things
happen:

» The chances of colliding with the cluster
Increase

CLUSTERING

 What are the negative effects of
clustering?

* If the cluster becomes too large, two things
happen:

» The chances of colliding with the cluster
Increase

* The time it takes to find something in the
cluster increases

CLUSTERING

 What are the negative effects of
clustering?

* If the cluster becomes too large, two things
happen:

» The chances of colliding with the cluster
Increase

* The time it takes to find something in the
cluster increases. This isn’t O(1) time!

CLUSTERING

« How can we solve this problem?

CLUSTERING

« How can we solve this problem?

* Resize the array

CLUSTERING

« How can we solve this problem?

* Resize the array
* Give the elements more space to avoid clusters

CLUSTERING

« How can we solve this problem?

* Resize the array

* Give the elements more space to avoid
clusters. How long does this take?

CLUSTERING

« How can we solve this problem?

* Resize the array

* Give the elements more space to avoid
clusters. How long does this take? O(n) all of

the elements need to be rehashed.

CLUSTERING

« How can we solve this problem?

* Resize the array

* Give the elements more space to avoid
clusters. How long does this take? O(n) all of

the elements need to be rehashed.
« Store multiple items in one location

CLUSTERING

« How can we solve this problem?

* Resize the array

* Give the elements more space to avoid
clusters. How long does this take? O(n) all of

the elements need to be rehashed.
« Store multiple items in one location
« This is called chaining

CLUSTERING

« How can we solve this problem?

* Resize the array

* Give the elements more space to avoid
clusters. How long does this take? O(n) all of

the elements need to be rehashed.
« Store multiple items in one location

« This is called chaining
- We'll discuss it later

COLLISIONS

 Hash table methods are defined by how
they handle collisions

COLLISIONS

 Hash table methods are defined by how
they handle collisions

 Two main approaches

COLLISIONS

 Hash table methods are defined by how
they handle collisions

 Two main approaches
* Probing

COLLISIONS

 Hash table methods are defined by how
they handle collisions

 Two main approaches

* Probing
 Chaining

COLLISIONS
* Probing

COLLISIONS
* Probing

 Linear probing

COLLISIONS
* Probing

 Linear probing
* Try the appropriate hash table row first

COLLISIONS
* Probing

 Linear probing
* Try the appropriate hash table row first

* Increase the index by one until a spot is
found

COLLISIONS
* Probing

 Linear probing
* Try the appropriate hash table row first

* Increase the index by one until a spot is
found

« Guaranteed to find a spot if it is available

COLLISIONS
* Probing

 Linear probing
* Try the appropriate hash table row first

* Increase the index by one until a spot is
found

« Guaranteed to find a spot if it is available

* If the array is too full, its operations reach
O(n) time

COLLISIONS

* Probing
* Quadratic Probing

COLLISIONS

* Probing
* Quadratic Probing

- Rather than increasing by one each time, we
Increase by the squares

COLLISIONS

* Probing
* Quadratic Probing

- Rather than increasing by one each time, we
Increase by the squares

* k+1, k+4, k+9, k+16, k+25

COLLISIONS

* Probing
* Quadratic Probing

- Rather than increasing by one each time, we
Increase by the squares

* k+1, k+4, k+9, k+16, k+25
» Certain tables can cause secondary
clustering

COLLISIONS

* Probing
* Quadratic Probing

- Rather than increasing by one each time, we
Increase by the squares

* k+1, k+4, k+9, k+16, k+25
» Certain tables can cause secondary
clustering

COLLISIONS

* Probing
* Quadratic Probing

- Rather than increasing by one each time, we
Increase by the squares

« k+1, k+4, k+9, k+16, k+25

» Certain tables can cause secondary
clustering

« Can fail to insert if the table is over half full

COLLISIONS

* Probing
* Secondary Hashing

COLLISIONS

* Probing
* Secondary Hashing

 If two keys collide in the hash table, then a
secondary hash indicates the probing size

COLLISIONS

* Probing
* Secondary Hashing

 If two keys collide in the hash table, then a
secondary hash indicates the probing size

* Need to be careful, possible for infinite loops with a
very empty array

