CSE 373

OCTOBER 13TH – AVL TREES

ASSORTED MINUTIAE

- P1 scripts run on Sunday
 - Apologies for part 1 script failures
 - You will receive the part 1 grade for your part 2 code
 - Given opportunity next week to get points back
 - Leave team member as comment on canvas

TODAY'S LECTURE

- AVL Trees
 - Balance
 - Implementation

• AVL Trees

- AVL Trees
 - BST trees with AVL property

- AVL Trees
 - BST trees with AVL property
 - Abs(height(left) height(right)) <= 1

AVL Trees

- BST trees with AVL property
- Abs(height(left) height(right)) <= 1
- Heights of subtrees can differ by at most one

AVL Trees

- BST trees with AVL property
- Abs(height(left) height(right)) <= 1
- Heights of subtrees can differ by at most one
- This property must be preserved throughout the tree

AVL OPERATIONS

- Since AVL trees are also BST trees, they should support the same functionality
 - Insert(key k, value v)
 - Find(key k): Same as BST!
 - Delete(key k):
- For insert, we should maintain AVL property as we build

AVL OPERATIONS

- Insert(key k, value v):
 - Insert the key value pair into the dictionary
 - Verify that balance is maintained
 - If not, correct the tree
- How do we correct the tree?

• Start with the single root

• Add 7 to the tree

• Add 7 to the tree. Is balance preserved?

- Add 7 to the tree. Is balance preserved?
 - Yes

Add 9 to the tree

• Add 9 to the tree. Is balance preserved?

- Add 9 to the tree. Is balance preserved?
 - No.

• How do we correct this imbalance?

• What shape do we want?

• What then do we have as the root?

• Since 7 must be the root, we "rotate" that node into position.

- To correct this case:
 - B must become the root

- To correct this case:
 - B must become the root
 - We rotate B to the root position

- To correct this case:
 - B must become the root
 - We rotate B to the root position
 - A becomes the left child of B

- To correct this case:
 - B must become the root
 - We rotate B to the root position
 - A becomes the left child of B
 - This is called the "left rotation"

Right rotation

- Right rotation
 - Symmetric concept

- Right rotation
 - Symmetric concept
 - B must become the new root

• These are the "single" rotations

- These are the "single" rotations
 - In general, this rotation occurs when an addition is made to the right-right or left-left grandchild

- These are the "single" rotations
 - In general, this rotation occurs when an addition is made to the right-right or left-left grandchild
 - The balance might not be off on the parent! An insert might upset balance up the tree

- General case
 - Suppose this tree is balanced, {X,Y,Z} all have the same height

- General case
 - Suppose this tree is balanced, {X,Y,Z} all have the same height
 - Adding A, puts C out of balance

- General case
 - Suppose this tree is balanced, {X,Y,Z} all have the same height
 - Adding A, puts C out of balance
 - Rotate B up and pass the Y subtree to C

General case

- Suppose this tree is balanced, {X,Y,Z} all have the same height
- Adding A, puts C out of balance
- Rotate B up and pass the Y subtree to C

General case

- Suppose this tree is balanced, {X,Y,Z} all have the same height
- Adding A, puts C out of balance
- Rotate B up and pass the Y subtree to C
- Perform this rotation at the lowest point of imbalance

 These two rotations (right-right and leftleft) are symmetric and can be solved the same way
- These two rotations (right-right and leftleft) are symmetric and can be solved the same way
 - Named by the location of the added node relative to the unbalanced node

- These two rotations (right-right and leftleft) are symmetric and can be solved the same way
 - Named by the location of the added node relative to the unbalanced node
 - What are the other two cases?

Right left case

- Right left case
 - Again, A is out of balance

- Right left case
 - Again, A is out of balance
 - This time, the addition (B) comes between A and C

- Right left case
 - Again, A is out of balance
 - This time, the addition (B) comes between A and C
 - In this case, the grandchild must become the root.

Right left case

- Again, A is out of balance
- This time, the addition (B) comes between A and C
- In this case, the grandchild must become the root.

 Identifying what should be the new root is key

- Identifying what should be the new root is key
- Imagine "lifting" up the root

- Identifying what should be the new root is key
- Imagine "lifting" up the root
- Where will the children have to go to maintain the search property?

I apologize for what you are about to see...

• This is for your reference later.

Let's do an example. Insert(13)

• Where is the imbalance?

• Where is the imbalance?

• Where is the imbalance? (also 7 and 10)

• What will be the new root?

• What will be the new root?

• What will be the new root? Why?

What does the new tree look like?

 The replaced root is always a child of the new root! Whether single or double

AVL VISUALIZER

- <u>https://www.cs.usfca.edu/~galles/</u> visualization/AVLtree.html
- Note that this tool uses a different definition for height than we do.

 You do not need to memorize this proof, you need to understand it

- You do not need to memorize this proof, you need to understand it
 - Let's consider the most "unbalanced" AVL tree, that is: the tree for each height that has the fewest nodes

• For height 0, there is only one possible tree.

For height 0, there is only one possible tree.

 For height 1, there are two possible trees, each with two nodes.

• For height 0, there is only one possible tree.

• For height 1, there are two possible trees, each with two nodes.

 What about for height two? What tree has the fewest number of nodes?

- What about for height two? What tree has the fewest number of nodes?
 - *Hint: balance will probably not be zero*

- What about for height two? What tree has the fewest number of nodes?
 - *Hint: balance will probably not be zero*

- What about for height two? What tree has the fewest number of nodes?
 - *Hint: balance will probably not be zero*

There are multiple of these trees, but what's special about it?

 The smallest tree of height two is a node where one child is the smallest tree of heigh one and the other one is the smallest tree of height zero.

• In general then, if $N_0 = 1$ and $N_1 = 2$ and $N_2 = 4$, what is N_k ?

- In general then, if $N_0 = 1$ and $N_1 = 2$ and $N_2 = 4$, what is N_k ?
 - Powers of two seems intuitive, but this is a good case of why 3 doesn't always make the pattern.

- In general then, if $N_0 = 1$ and $N_1 = 2$ and $N_2 = 4$, what is N_k ?
 - Powers of two seems intuitive, but this is a good case of why 3 doesn't always make the pattern.
 - $N_4 = 7$, how do I know?

- In general then, if $N_0 = 1$ and $N_1 = 2$ and $N_2 = 4$, what is N_k ?
 - N_k = 1 + N_{k-1} + N_{k-2} Because the smallest AVL tree is a node (1) with a child that is the smallest AVL tree of height k-1 (N_{k-1}) and the other child is the smallest AVL tree of height k-2 (N_{k-2}).
- In general then, if $N_0 = 1$ and $N_1 = 2$ and $N_2 = 4$, what is N_k ?
 - N_k = 1 + N_{k-1} + N_{k-2} Because the smallest AVL tree is a node (1) with a child that is the smallest AVL tree of height k-1 (N_{k-1}) and the other child is the smallest AVL tree of height k-2 (N_{k-2}).
 - This means every non-leaf has balance 1

- In general then, if $N_0 = 1$ and $N_1 = 2$ and $N_2 = 4$, what is N_k ?
 - N_k = 1 + N_{k-1} + N_{k-2} Because the smallest AVL tree is a node (1) with a child that is the smallest AVL tree of height k-1 (N_{k-1}) and the other child is the smallest AVL tree of height k-2 (N_{k-2}).
 - This means every non-leaf has balance 1
 - Nothing in the tree is perfectly balanced.

 $N_k = 1 + N_{k-1} + N_{k-2}$ $N_{k-1} = 1 + N_{k-2} + N_{k-3}$

 $N_k = 1 + N_{k-1} + N_{k-2}$ $N_{k-1} = 1 + N_{k-2} + N_{k-3}$

Substitute the k-1 into the original equation

$$N_k = 1 + N_{k-1} + N_{k-2}$$

 $N_{k-1} = 1 + N_{k-2} + N_{k-3}$

1 + N_{k-3} must be greater than zero

 $N_{k} = 1 + N_{k-1} + N_{k-2}$ $N_{k-1} = 1 + N_{k-2} + N_{k-3}$ $N_{k} = 1 + (1 + N_{k-2} + N_{k-3}) + N_{k-2}$ $N_{k} = 2 + 2N_{k-2} + N_{k-3}$ $N_{k} > 2N_{k-2}$

1 + N_{k-3} must be greater than zero

 $N_{k} = 1 + N_{k-1} + N_{k-2}$ $N_{k-1} = 1 + N_{k-2} + N_{k-3}$ $N_{k} = 1 + (1 + N_{k-2} + N_{k-3}) + N_{k-2}$ $N_{k} = 2 + 2N_{k-2} + N_{k-3}$ $N_{k} > 2N_{k-2}$

This means the tree doubles in size after every two height (compared to a perfect tree which doubles with every added height)

 If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
 - Insert(key k, value v)
 - Find(key k)

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
 - Insert(key k, value v)
 - Find(key k)
 - Delete(key k)

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
 - Insert(key k, value v)
 - Find(key k) : O(height) = O(log n)
 - Delete(key k)

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
 - Insert(key k, value v) = O(log n) + balancing
 - Find(key k) : O(height) = O(log n)
 - Delete(key k)

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
 - Insert(key k, value v) = O(log n) + balancing
 - Find(key k) : O(height) = O(log n)
 - Delete(key k): O(log n) + balancing(?)
- How long does it take to perform a balance?

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
 - Insert(key k, value v) = O(log n) + balancing
 - Find(key k) : O(height) = O(log n)
 - Delete(key k): O(log n) + balancing(?)
- How long does it take to perform a balance?
 - There are at most three nodes and four subtrees to move around.

- If AVL rotation can enforce O(log n) height, what are the asymptotic runtimes for our functions?
 - Insert(key k, value v) = O(log n) + balancing
 - Find(key k) : O(height) = O(log n)
 - Delete(key k): O(log n) + balancing(?)
- How long does it take to perform a balance?
 - There are at most three nodes and four subtrees to move around. O(1)

• By using AVL rotations, we can keep the tree balanced

- By using AVL rotations, we can keep the tree balanced
- An AVL tree has O(log n) height

- By using AVL rotations, we can keep the tree balanced
- An AVL tree has O(log n) height
- This does not come at an increased asymptotic runtime for insert.

- By using AVL rotations, we can keep the tree balanced
- An AVL tree has O(log n) height
- This does not come at an increased asymptotic runtime for insert.
- Rotations take a constant time.