CSE 373

OCTOBER 13T - AVL TREES




ASSORTED MINUTIAE

* P1 scripts run on Sunday

* Apologies for part 1 script failures

* You will receive the part 1 grade for your
part 2 code

« Given opportunity next week to get points
back

 Leave team member as comment on
canvas




TODAY’S LECTURE

 AVL Trees

- Balance
* Implementation




REVIEW

 AVL Trees




REVIEW

« AVL Trees
« BST trees with AVL property




REVIEW

 AVL Trees

« BST trees with AVL property
* Abs(height(left) — height(right)) <=1




REVIEW

 AVL Trees
« BST trees with AVL property
* Abs(height(left) — height(right)) <=1

* Heights of subtrees can differ by at most
one




REVIEW

 AVL Trees

« BST trees with AVL property

* Abs(height(left) — height(right)) <=1

* Heights of subtrees can differ by at most
one

* This property must be preserved
throughout the tree




AVL OPERATIONS

« Since AVL trees are also BST trees, they
should support the same functionality

* Insert(key k, value v)
* Find(key k): Same as BST!
* Delete(key k):
* For insert, we should maintain AVL property
as we build




AVL OPERATIONS

* Insert(key k, value v):

* Insert the key value pair into the dictionary
 Verify that balance is maintained
* If not, correct the tree

 How do we correct the tree?




AVL INSERT
O

« Start with the single root




AVL INSERT

« Add 7 to the tree




AVL INSERT

 Add 7 to the tree. Is balance preserved?




AVL INSERT

O}
(2o

 Add 7 to the tree. Is balance preserved?

* Yes




AVL INSERT

IS

« Add 9 to the tree




AVL INSERT

IS

 Add 9 to the tree. Is balance preserved?




AVL INSERT

 Add 9 to the tree. Is balance preserved?
* No.




AVL INSERT

* How do we correct this imbalance?




AVL INSERT

 What shape do we want? / \
- What then do we have as the root? ‘ ‘




AVL INSERT
(7) o

& W

 Since 7 must be the root, we “rotate” that node
into position.




AVL “ROTATION?”

 To correct this case:
B must become the root e

o




AVL “ROTATION?”

 To correct this case: °
B must become the root
* We rotate B to the root position

o




AVL “ROTATION?”

 To correct this case: e
B must become the root
* We rotate B to the root position

- A becomes the left child of B l\@

& ©




AVL “ROTATION?”

 To correct this case: °
B must become the root
* We rotate B to the root position

- A becomes the left child of B \@
* This is called the “left rotation” l

& ©




AVL “ROTATION?”

* Right rotation
O




AVL “ROTATION?”

* Right rotation G
* Symmetric concept




AVL “ROTATION?”

* Right rotation G
* Symmetric concept
* B must become the new root




AVL “ROTATION?”

 These are the “single” rotations




AVL “ROTATION?”

 These are the “single” rotations

* In general, this rotation occurs when an
addition is made to the right-right or left-left
grandchild




AVL “ROTATION?”

 These are the “single” rotations

* In general, this rotation occurs when an
addition is made to the right-right or left-left

grandchild

- The balance might not be off on the
parent! An insert might upset balance up

the tree




AVL “ROTATION?”

« General case

e Suppose this tree
Is balanced, {X,Y,Z}
all have the same
height




AVL “ROTATION?”

« General case

* Suppose this tree
Is balanced, {X,Y,Z}
all have the same
height

« Adding A, puts C out
of balance




AVL “ROTATION?”

« General case

* Suppose this tree
Is balanced, {X,Y,Z}
all have the same
height

« Adding A, puts C out
of balance CAB
* Rotate B up and pass

the Y subtree to C




AVL “ROTATION?”

« General case

* Suppose this tree
Is balanced, {X,Y,Z}
all have the same
height

« Adding A, puts C out
of balance

* Rotate B up and pass CAB
the Y subtree to C




AVL “ROTATION?”

« General case

e Suppose this tree
Is balanced, {X,Y,Z}
all have the same
height

« Adding A, puts C out
of balance

* Rotate B up and pass CAB
the Y subtree to C

* Perform this rotation at the lowest point
of imbalance




AVL “ROTATION?”

 These two rotations (right-right and left-
left) are symmetric and can be solved the
same way




AVL “ROTATION?”

 These two rotations (right-right and left-
left) are symmetric and can be solved the
same way

* Named by the location of the added node
relative to the unbalanced node




AVL “ROTATION?”

 These two rotations (right-right and left-
left) are symmetric and can be solved the
same way

* Named by the location of the added node
relative to the unbalanced node

 What are the other two cases?




AVL “ROTATION?”
* Right left case Q




AVL “ROTATION?”

* Right left case Q
* Again, Ais out of balance G




AVL “ROTATION?”

* Right left case Q

* Again, Ais out of balance G

 This time, the addition (B)
comes between Aand C G




AVL “ROTATION?”

* Right left case Q
* Again, Ais out of balance G
 This time, the addition (B)
comes between Aand C G

* |In this case, the grandchild
must become the root.




AVL “ROTATION?”

* Right left case Q

* Again, Ais out of balance

 This time, the addition (B) G
comes between Aand C G

* |In this case, the grandchild
must become the root. l

& @




AVL “ROTATION?”

 ldentifying what should Q
be the new root is key

& e




AVL “ROTATION?”

 ldentifying what should Q
be the new root is key

* Imagine “lifting” up the root G

& e




AVL “ROTATION?”

 ldentifying what should Q
be the new root is key

* Imagine “lifting” up the root e

- Where will the children have (B
to go to maintain the search l

fa




AVL “ROTATION?”

« | apologize for what you are about to
see...




AVL “ROTATION?”

* This is for your reference later.




AVL “ROTATION?”

* Let’s do an example. Insert(13)



AVL “ROTATION?”

e Where is the imbalance?



AVL “ROTATION?”

e Where is the imbalance?



AVL “ROTATION?”

 Where is the imbalance? (also 7 and 10)



AVL “ROTATION?”

« What will be the new root?



AVL “ROTATION?”

« What will be the new root?



AVL “ROTATION?”

 What will be the new root? Why?



AVL “ROTATION?”

« What does the new tree look like?




AVL “ROTATION?”

 The replaced root is always a child of the
new root! Whether single or double




AVL VISUALIZER

* https://www.cs.usfca.edu/~galles/
visualization/AVLtree.html

 Note that this tool uses a different
definition for height than we do.




AVL HEIGHT (PROOF)

* You do not need to memorize this proof,
you nheed to understand it




AVL HEIGHT (PROOF)

* You do not need to memorize this proof,
you nheed to understand it

* Let’s consider the most “unbalanced” AVL
tree, that is: the tree for each height that has
the fewest nodes




AVL HEIGHT (PROOF)

* For height 0, there is only one possible

tree.
O




AVL HEIGHT (PROOF)

* For height 0, there is only one possible

tree.
O

* For height 1, there are two possible trees,
each with two nodes.




AVL HEIGHT (PROOF)

* For height 0, there is only one possible

tree.
O

* For height 1, there are two possible trees,
each with two nodes.

v d




AVL HEIGHT (PROOF)

 What about for height two? What tree has
the fewest number of nodes?




AVL HEIGHT (PROOF)

 What about for height two? What tree has
the fewest number of nodes?

* Hint: balance will probably not be zero




AVL HEIGHT (PROOF)

 What about for height two? What tree has
the fewest number of nodes?

* Hint: balance will probably not be zero




AVL HEIGHT (PROOF)

 What about for height two? What tree has
the fewest number of nodes?

* Hint: balance will probably not be zero

There are multiple of these trees, but what’s
special about it?




AVL HEIGHT (PROOF)

 The smallest tree of height two is a node
where one child is the smallest tree of
heigh one and the other one is the
smallest tree of height zero.




AVL HEIGHT (PROOF)

 In general then, if N,=1 and N, =2 and
N, =4, whatis N, ?




AVL HEIGHT (PROOF)

 In general then, if N,=1 and N, =2 and
N, =4, whatis N, ?

* Powers of two seems intuitive, but this is
a good case of why 3 doesn’t always
make the pattern.




AVL HEIGHT (PROOF)

 In general then, if N,=1 and N, =2 and
N, =4, whatis N, ?

* Powers of two seems intuitive, but this is
a good case of why 3 doesn’t always
make the pattern.

* N,=7, how do | know?




AVL HEIGHT (PROOF)

 In general then, if N,=1 and N, =2 and
N, =4, whatis N, ?

* Ny=1+N +N,
Because the smallest AVL tree is a node (1)
with a child that is the smallest AVL tree of
height k-1 (N,_,) and the other child is the

smallest AVL tree of height k-2 (N, ,).




AVL HEIGHT (PROOF)

 In general then, if N,=1 and N, =2 and
N, =4, whatis N, ?

* Ny=1+N +N,
Because the smallest AVL tree is a node (1)
with a child that is the smallest AVL tree of
height k-1 (N,_,) and the other child is the

smallest AVL tree of height k-2 (N, ,).
- This means every non-leaf has balance 1




AVL HEIGHT (PROOF)

 In general then, if N,=1 and N, =2 and
N, =4, whatis N, ?
* Ny=1+N +N,
Because the smallest AVL tree is a node (1)
with a child that is the smallest AVL tree of

height k-1 (N,_,) and the other child is the
smallest AVL tree of height k-2 (N, ,).

- This means every non-leaf has balance 1
* Nothing in the tree is perfectly balanced.




AVL HEIGHT (PROOF)

Ny=1+ N, + N,




AVL HEIGHT (PROOF)




AVL HEIGHT (PROOF)

Substitute the k-1 into the original equation

N,=1+ N__; + N,




AVL HEIGHT (PROOF)

1 + N, ; must be greater than zero

=1+ N, + N,

Nk
N, _
N, = 1 + (1 + N, , + N, ;) + N,
N, = 2 + 2N,_, + N,_,

Nk

> 2Ny,




AVL HEIGHT (PROOF)

1 + N, ; must be greater than zero

=1+ N, + N__,
, =1+ N, + N,

Ny
N, _
Ny =1+ (1 +N_, + N_3) + N,
N, = 2 + 2N,_, + N_;

N, > 2N, _,

This means the tree doubles in size after every
two height (compared to a perfect tree which
doubles with every added height)




AVL CONCLUSION

 If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?




AVL CONCLUSION

 If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?

* Insert(key k, value v)
* Find(key k)




AVL CONCLUSION

 If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?

* Insert(key k, value v)
* Find(key k)
* Delete(key k)




AVL CONCLUSION

 If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?

* Insert(key k, value v)
* Find(key k) : O(height) = O(log n)
* Delete(key k)




AVL CONCLUSION

 If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?

* Insert(key k, value v) = O(log n) + balancing
* Find(key k) : O(height) = O(log n)
* Delete(key k)




AVL CONCLUSION

If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?

* Insert(key k, value v) = O(log n) + balancing
* Find(key k) : O(height) = O(log n)

* Delete(key k): O(log n) + balancing(?)

How long does it take to perform a balance?




AVL CONCLUSION

* If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?

* Insert(key k, value v) = O(log n) + balancing

* Find(key k) : O(height) = O(log n)

* Delete(key k): O(log n) + balancing(?)
 How long does it take to perform a balance?

 There are at most three nodes and four
subtrees to move around.




AVL CONCLUSION

* If AVL rotation can enforce O(log n)
height, what are the asymptotic runtimes
for our functions?

* Insert(key k, value v) = O(log n) + balancing

* Find(key k) : O(height) = O(log n)

* Delete(key k): O(log n) + balancing(?)
 How long does it take to perform a balance?

 There are at most three nodes and four
subtrees to move around. O(1)




AVL CONCLUSION

By using AVL rotations, we can keep the
tree balanced




AVL CONCLUSION

By using AVL rotations, we can keep the
tree balanced

 An AVL tree has O(log n) height




AVL CONCLUSION

By using AVL rotations, we can keep the
tree balanced

 An AVL tree has O(log n) height

 This does not come at an increased
asymptotic runtime for insert.




AVL CONCLUSION

By using AVL rotations, we can keep the
tree balanced

An AVL tree has O(log n) height

This does not come at an increased
asymptotic runtime for insert.

Rotations take a constant time.




