CSE 373

OCTOBER 13TH – AVL TREES
ASSORTED MINUTIAE

• P1 scripts run on Sunday
 • Apologies for part 1 script failures
 • You will receive the part 1 grade for your part 2 code
 • Given opportunity next week to get points back
 • Leave team member as comment on canvas
TODAY’S LECTURE

• AVL Trees
 • Balance
 • Implementation
REVIEW

• AVL Trees
REVIEW

• AVL Trees
 • BST trees with AVL property
REVIEW

• AVL Trees
 • BST trees with AVL property
 • $\text{Abs}(\text{height(left)} - \text{height(right)}) \leq 1$
REVIEW

• AVL Trees
 • BST trees with AVL property
 • Abs(height(left) – height(right)) <= 1
 • Heights of subtrees can differ by at most one
REVIEW

AVL Trees

- BST trees with AVL property
- \(\text{Abs}(\text{height(left)} - \text{height(right)}) \leq 1 \)
- Heights of subtrees can differ by at most one
- This property must be preserved throughout the tree
AVL OPERATIONS

• Since AVL trees are also BST trees, they should support the same functionality
 • Insert(key k, value v)
 • Find(key k): Same as BST!
 • Delete(key k):
• For insert, we should maintain AVL property as we build
AVL OPERATIONS

• **Insert**(*key k, value v*):
 • Insert the key value pair into the dictionary
 • Verify that balance is maintained
 • If not, correct the tree

• **How do we correct the tree?**
AVL INSERT

- Start with the single root
• Add 7 to the tree
• Add 7 to the tree. Is balance preserved?
• Add 7 to the tree. Is balance preserved?
 • Yes
AVL INSERT

- Add 9 to the tree
• Add 9 to the tree. Is balance preserved?
Add 9 to the tree. Is balance preserved?

No.
• How do we correct this imbalance?
AVL INSERT

- What shape do we want?
 - What then do we have as the root?
AVL INSERT

- Since 7 must be the root, we “rotate” that node into position.
AVL “ROTATION”

• To correct this case:
 • B must become the root
AVL “ROTATION”

• To correct this case:
 • B must become the root
 • We rotate B to the root position
AVL “ROTATION”

• To correct this case:
 • B must become the root
 • We rotate B to the root position
 • A becomes the left child of B
AVL “ROTATION”

• To correct this case:
 • B must become the root
 • We rotate B to the root position
 • A becomes the left child of B
 • This is called the “left rotation”
AVL “ROTATION”

• Right rotation
AVL “ROTATION”

• Right rotation
 • Symmetric concept
AVL “ROTATION”

• Right rotation
 • Symmetric concept
 • B must become the new root
AVL “ROTATION”

• These are the “single” rotations
AVL “ROTATION”

• These are the “single” rotations
 • In general, this rotation occurs when an addition is made to the right-right or left-left grandchild
AVL “ROTATION”

• These are the “single” rotations
 • In general, this rotation occurs when an addition is made to the right-right or left-left grandchild
 • The balance might not be off on the parent! An insert might upset balance up the tree
AVL “ROTATION”

• **General case**
 • Suppose this tree is balanced, \{X,Y,Z\} all have the same height
AVL “ROTATION”

• General case
 • Suppose this tree is balanced, \{X,Y,Z\} all have the same height
 • Adding A, puts C out of balance
AVL “ROTATION”

• General case
 • Suppose this tree is balanced, \{X,Y,Z\} all have the same height
 • Adding A, puts C out of balance
 • Rotate B up and pass the Y subtree to C
AVL “ROTATION”

General case

- Suppose this tree is balanced, \(\{X,Y,Z\} \) all have the same height
- Adding A, puts C out of balance
- Rotate B up and pass the Y subtree to C
AVL “ROTATION”

• General case
 • Suppose this tree is balanced, \{X,Y,Z\} all have the same height
 • Adding A, puts C out of balance
 • Rotate B up and pass the Y subtree to C
 • Perform this rotation at the lowest point of imbalance
AVL “ROTATION”

- These two rotations (right-right and left-left) are symmetric and can be solved the same way
AVL “ROTATION”

• These two rotations (right-right and left-left) are symmetric and can be solved the same way
 • Named by the location of the added node relative to the unbalanced node
AVL “ROTATION”

- These two rotations (right-right and left-left) are symmetric and can be solved the same way
 - Named by the location of the added node relative to the unbalanced node
 - What are the other two cases?
AVL “ROTATION”

• Right left case
AVL “ROTATION”

• Right left case
 • Again, A is out of balance
AVL “ROTATION”

- Right left case
 - Again, A is out of balance
 - This time, the addition (B) comes between A and C
AVL “ROTATION”

- Right left case
 - Again, A is out of balance
 - This time, the addition (B) comes between A and C
 - In this case, the grandchild must become the root.
AVL “ROTATION”

• Right left case
 • Again, A is out of balance
 • This time, the addition (B) comes between A and C
 • In this case, the grandchild must become the root.
AVL “ROTATION”

• Identifying what should be the new root is key
AVL “ROTATION”

- Identifying what should be the new root is key
- Imagine “lifting” up the root
AVL “ROTATION”

• Identifying what should be the new root is key
• Imagine “lifting” up the root
• Where will the children have to go to maintain the search property?
AVL “ROTATION”

• I apologize for what you are about to see…
AVL “ROTATION”

• This is for your reference later.
AVL “ROTATION”

- Let’s do an example. Insert(13)
AVL “ROTATION”

- Where is the imbalance?
AVL “ROTATION”

- Where is the imbalance?
• Where is the imbalance? (also 7 and 10)
AVL “ROTATION”

• What will be the new root?
AVL “ROTATION”

- What will be the new root?
AVL “ROTATION”

- What will be the new root? Why?
AVL “ROTATION”

- What does the new tree look like?
AVL “ROTATION”

- The replaced root is always a child of the new root! Whether single or double
AVL VISUALIZER

- https://www.cs.usfca.edu/~galles/visualization/AVLtree.html

- Note that this tool uses a different definition for height than we do.
AVL HEIGHT (PROOF)

• You do not need to memorize this proof, you need to understand it
AVL HEIGHT (PROOF)

• You do not need to memorize this proof, you need to understand it
 • Let’s consider the most “unbalanced” AVL tree, that is: the tree for each height that has the fewest nodes
AVL HEIGHT (PROOF)

- For height 0, there is only one possible tree.
AVL HEIGHT (PROOF)

• For height 0, there is only one possible tree.

• For height 1, there are two possible trees, each with two nodes.
AVL HEIGHT (PROOF)

- For height 0, there is only one possible tree.

- For height 1, there are two possible trees, each with two nodes.
AVL HEIGHT (PROOF)

• What about for height two? What tree has the fewest number of nodes?
AVL HEIGHT (PROOF)

• What about for height two? What tree has the fewest number of nodes?
 • *Hint: balance will probably not be zero*
AVL HEIGHT (PROOF)

- What about for height two? What tree has the fewest number of nodes?
 - Hint: balance will probably not be zero
AVL HEIGHT (PROOF)

- What about for height two? What tree has the fewest number of nodes?
 - *Hint: balance will probably not be zero*

There are multiple of these trees, but what’s special about it?
AVL HEIGHT (PROOF)

The smallest tree of height two is a node where one child is the smallest tree of height one and the other one is the smallest tree of height zero.
AVL HEIGHT (PROOF)

• In general then, if \(N_0 = 1 \) and \(N_1 = 2 \) and \(N_2 = 4 \), what is \(N_k \)?
AVL HEIGHT (PROOF)

• In general then, if $N_0 = 1$ and $N_1 = 2$ and $N_2 = 4$, what is N_k?
 • Powers of two seems intuitive, but this is a good case of why 3 doesn’t always make the pattern.
AVL HEIGHT (PROOF)

• In general then, if \(N_0 = 1 \) and \(N_1 = 2 \) and \(N_2 = 4 \), what is \(N_k \)?

 • Powers of two seems intuitive, but this is a good case of why 3 doesn’t always make the pattern.

 • \(N_4 = 7 \), how do I know?
AVL HEIGHT (PROOF)

• In general then, if \(N_0 = 1 \) and \(N_1 = 2 \) and \(N_2 = 4 \), what is \(N_k \)?

• \(N_k = 1 + N_{k-1} + N_{k-2} \)
 Because the smallest AVL tree is a node (1) with a child that is the smallest AVL tree of height \(k-1 \) \((N_{k-1}) \) and the other child is the smallest AVL tree of height \(k-2 \) \((N_{k-2}) \).
AVL HEIGHT (PROOF)

- In general then, if $N_0 = 1$ and $N_1 = 2$ and $N_2 = 4$, what is N_k?
 - $N_k = 1 + N_{k-1} + N_{k-2}$
 Because the smallest AVL tree is a node (1) with a child that is the smallest AVL tree of height $k-1$ (N_{k-1}) and the other child is the smallest AVL tree of height $k-2$ (N_{k-2}).
 - This means every non-leaf has balance 1
AVL HEIGHT (PROOF)

- In general then, if $N_0 = 1$ and $N_1 = 2$ and $N_2 = 4$, what is N_k?
 - $N_k = 1 + N_{k-1} + N_{k-2}$
 Because the smallest AVL tree is a node (1) with a child that is the smallest AVL tree of height $k-1$ (N_{k-1}) and the other child is the smallest AVL tree of height $k-2$ (N_{k-2}).
 - This means every non-leaf has balance 1
 - Nothing in the tree is perfectly balanced.
AVL HEIGHT (PROOF)

\[N_k = 1 + N_{k-1} + N_{k-2} \]
\[N_{k-1} = 1 + N_{k-2} + N_{k-3} \]
AVL HEIGHT (PROOF)

\[N_k = 1 + N_{k-1} + N_{k-2} \]
\[N_{k-1} = 1 + N_{k-2} + N_{k-3} \]
AVL HEIGHT (PROOF)

Substitute the k-1 into the original equation

\[N_k = 1 + N_{k-1} + N_{k-2} \]
\[N_{k-1} = 1 + N_{k-2} + N_{k-3} \]
AVL HEIGHT (PROOF)

1 + \(N_{k-3} \) must be greater than zero

\[
N_k = 1 + N_{k-1} + N_{k-2}
\]

\[
N_{k-1} = 1 + N_{k-2} + N_{k-3}
\]

\[
N_k = 1 + (1 + N_{k-2} + N_{k-3}) + N_{k-2}
\]

\[
N_k = 2 + 2N_{k-2} + N_{k-3}
\]

\[
N_k > 2N_{k-2}
\]
AVL HEIGHT (PROOF)

1 + N_{k-3} must be greater than zero

N_k = 1 + N_{k-1} + N_{k-2}
N_{k-1} = 1 + N_{k-2} + N_{k-3}
N_k = 1 + (1 + N_{k-2} + N_{k-3}) + N_{k-2}
N_k = 2 + 2N_{k-2} + N_{k-3}
N_k > 2N_{k-2}

This means the tree doubles in size after every two height (compared to a perfect tree which doubles with every added height)
AVL CONCLUSION

• If AVL rotation can enforce $O(\log n)$ height, what are the asymptotic runtimes for our functions?
AVL CONCLUSION

• If AVL rotation can enforce $O(\log n)$ height, what are the asymptotic runtimes for our functions?
 • Insert(key k, value v)
 • Find(key k)
AVL CONCLUSION

• If AVL rotation can enforce $O(\log n)$ height, what are the asymptotic runtimes for our functions?
 • Insert(key k, value v)
 • Find(key k)
 • Delete(key k)
AVL CONCLUSION

If AVL rotation can enforce \(O(\log n)\) height, what are the asymptotic runtimes for our functions?

- Insert(key k, value v)
- Find(key k) : \(O(\text{height}) = O(\log n)\)
- Delete(key k)
If AVL rotation can enforce $O(\log n)$ height, what are the asymptotic runtimes for our functions?

- $\text{Insert}(\text{key } k, \text{ value } v) = O(\log n) + \text{balancing}$
- $\text{Find}(\text{key } k) : O(\text{height}) = O(\log n)$
- $\text{Delete}(\text{key } k)$
AVL CONCLUSION

• If AVL rotation can enforce $O(\log n)$ height, what are the asymptotic runtimes for our functions?
 • Insert(key k, value v) = $O(\log n) +$ balancing
 • Find(key k) : $O(\text{height}) = O(\log n)$
 • Delete(key k): $O(\log n) + \text{balancing} (?)$

• How long does it take to perform a balance?
AVL CONCLUSION

• If AVL rotation can enforce $O(\log n)$ height, what are the asymptotic runtimes for our functions?
 • Insert(key k, value v) = $O(\log n) + \text{balancing}$
 • Find(key k) : $O(\text{height}) = O(\log n)$
 • Delete(key k): $O(\log n) + \text{balancing}(?)$

• How long does it take to perform a balance?
 • There are at most three nodes and four subtrees to move around.
AVL CONCLUSION

• If AVL rotation can enforce $O(\log n)$ height, what are the asymptotic runtimes for our functions?
 • Insert(key k, value v) = $O(\log n)$ + balancing
 • Find(key k) : $O(\text{height}) = O(\log n)$
 • Delete(key k): $O(\log n) + balancing(?)$

• How long does it take to perform a balance?
 • There are at most three nodes and four subtrees to move around. $O(1)$
AVL CONCLUSION

• By using AVL rotations, we can keep the tree balanced
AVL CONCLUSION

• By using AVL rotations, we can keep the tree balanced

• An AVL tree has $O(\log n)$ height
AVL CONCLUSION

• By using AVL rotations, we can keep the tree balanced
• An AVL tree has $O(\log n)$ height
• This does not come at an increased asymptotic runtime for insert.
AVL CONCLUSION

- By using AVL rotations, we can keep the tree balanced
- An AVL tree has $O(\log n)$ height
- This does not come at an increased asymptotic runtime for insert.
- Rotations take a constant time.