
CSE 373
OCTOBER 11TH – TRAVERSALS AND AVL

MINUTIAE
•  Feedback for P1p1 should have gone out

before class
•  Grades on canvas tonight
•  Emails went to the student who submitted

the assignment
•  If you did not receive an email, it is because

your code didn’t compile. Verify that you
submitted the correct files on canvas and
contact me

MINUTIAE
•  HW2 out tonight

•  Written assignment
•  Analysis and bigO
•  Should be simple, opportunity to get

feedback on written problems before the
midterm

MINUTIAE
•  P1 student feedback

•  New project this quarter
•  Opening anonymous survey tonight
•  How long did you spend?
•  Which parts of the project were poorly

explained?
•  What did you get out of the project?

MINUTIAE
•  Because of the number of problems with

the project, I have decided to increase the
number of late days to 4.
•  If you’ve already completed this project, you

can use it on a later date, but this gives you a
little more leeway to complete this
assignment.

•  Late days will be accurate tonight when your
canvas grade is posted.

TODAY’S LECTURE
•  Traversal review

•  DFS/BFS/Pre/In/Post order
•  Memory Analysis
•  AVL Trees and how to balance

DEPTH FIRST SEARCH
•  All tree traversals start at the root
•  As the name implies, traverse down the

tree first.
•  Left or right does not explicitly matter,

but left usually comes first.

DEPTH FIRST SEARCH

How do we search this tree?

DEPTH FIRST SEARCH

Left node first

DEPTH FIRST SEARCH

Keep going down the left nodes

DEPTH FIRST SEARCH

Until you reach the bottom

DEPTH FIRST SEARCH

What next?

DEPTH FIRST SEARCH

Need some way to indicate that
you are completely searched

 (tell the parent)

DEPTH FIRST SEARCH

Parent now knows it is can search
the other child

DEPTH FIRST SEARCH

Leaves are searched when their
data is observed

DEPTH FIRST SEARCH

Now that both of its children have
been completely searched

DEPTH FIRST SEARCH

It needs to indicate that to its
parent

DEPTH FIRST SEARCH

That parent then knows to search
its right child

DEPTH FIRST SEARCH

That parent then knows to search
its right child

DEPTH FIRST SEARCH

This process repeats

DEPTH FIRST SEARCH

This process repeats

DEPTH FIRST SEARCH

This process repeats

DEPTH FIRST SEARCH

This process repeats

DEPTH FIRST SEARCH

This process repeats

DEPTH FIRST SEARCH

This process repeats

DEPTH FIRST SEARCH

This process repeats

DEPTH FIRST SEARCH

Now the left tree is completely
searched and we can search the

 right

DEPTH FIRST SEARCH

On the new subtree, we begin
search from the left

DEPTH FIRST SEARCH

On the new subtree, we begin
search from the left

DEPTH FIRST SEARCH

And we find the object we’re
looking for

DEPTH FIRST SEARCH
•  How does this work in application?

•  For each node, it searches its left subtree
entirely and then moves to the right tree

•  Here search works by breaking the
problem down into sub-problems

•  This is a good indication that we use
recursion

DEPTH FIRST SEARCH
•  Treat each subtree as a subproblem and

solve recursively.
•  Will go to maximum depth first.
•  When the node is found, the result will

return up the stack
•  What might be a different approach?

ALTERNATE APPROACH

How else to traverse?

ALTERNATE APPROACH

Search the tree from top to bottom

BREADTH FIRST SEARCH
•  Consider the approach

•  Start with the root
•  Search all nodes of depth 1
•  Search all nodes of depth 2
•  …
•  How do we get this ordering?

BREADTH FIRST SEARCH
•  What if we use a Queue?

•  Enqueue the root
•  Then what?

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

enqueue(A)

Queue:

BREADTH FIRST SEARCH
•  What if we use a Queue?
enqueue the root  
 
while the queue has elements:  

"dequeue the node  
"if it matches our search string  
" "return true"

"if it doesn’t,  
" "enqueue its non-null children  

return false;"

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

dequeue and check the node

Queue:

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

enqueue the children

Queue: B | C |

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

repeat

Queue: B | C |

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: C | D | E |

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: D | E | F | G |

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: E | F | G | H | I |

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: F | G | H | I | J | K |

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: G | H | I | J | K | L | M

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: H | I | J | K | L | M | N | O

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: I | J | K | L | M | N | O

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: J | K | L | M | N | O

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: K | L | M | N | O

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: L | M | N | O

BREADTH FIRST SEARCH

A

B

D

H I

E

J K

C

F

L M

G

N O

Queue: L | M | N | O

And now we’ve found it!

REVIEW
•  Breadth First Search

•  Enqueue the root
•  While the queue has elements

•  Dequeue
•  Process
•  Enqueue children

•  How much memory does this take?

SEARCH MEMORY USE

•  When does the queue have the most elements?

SEARCH MEMORY USE

•  At the widest point in the traversal

SEARCH MEMORY USE

•  At the widest point in the traversal
•  How many elements is this?

SEARCH MEMORY USE
•  Breadth First Search

•  In a perfect tree (where every row is
complete) of size n, how many elements
are in the last row?

SEARCH MEMORY USE
•  Breadth First Search

•  In a perfect tree (where every row is
complete) of size n, how many elements
are in the last row?

•  N/2

SEARCH MEMORY USE
•  Breadth First Search

•  In a perfect tree (where every row is
complete) of size n, how many elements
are in the last row?

•  ceiling(N/2)

SEARCH MEMORY USE
•  Breadth First Search

•  In a perfect tree (where every row is
complete) of size n, how many elements
are in the last row?

•  ceiling(N/2), this is important to know!

SEARCH MEMORY USE
•  Breadth First Search

•  In a perfect tree (where every row is
complete) of size n, how many elements
are in the last row?

•  ceiling(N/2), this is important to know!
•  O(n) memory usage!

SEARCH MEMORY USE
•  What about depth first search?

•  When does the stack have the most
elements on it?

SEARCH MEMORY USE

•  When does the stack have the most elements?
•  When it’s at the bottom

SEARCH MEMORY USE

•  When does the stack have the most elements?
•  When it’s at the bottom

SEARCH MEMORY USE
•  How many elements are in the stack in

this worst case?

SEARCH MEMORY USE
•  How many elements are in the stack in

this worst case?
•  The height of the tree

SEARCH MEMORY USE
•  How many elements are in the stack in

this worst case?
•  The height of the tree, O(n) if the tree is one-

sided, but O(log n) if the tree is balanced

SEARCH MEMORY USE
•  How many elements are in the stack in

this worst case?
•  The height of the tree, O(n) if the tree is one-

sided, but O(log n) if the tree is balanced
•  We will discuss balance later

SEARCH MEMORY USE
•  How many elements are in the stack in

this worst case?
•  The height of the tree, O(n) if the tree is one-

sided, but O(log n) if the tree is balanced
•  We will discuss balance later
•  Classic exam question! Consider memory

AND execution times

REVIEW
•  Ordering

•  What is the difference between these three
implementations

•  Process; DFS(left); DFS(right)
•  DFS(left); Process; DFS(right)
•  DFS(left); DFS(right); Process

•  How does this impact the final output?

REVIEW
•  Ordering

•  Three traversal types
•  Pre-order
•  In-order
•  Post-order

•  Instruction (Parse) trees

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output:
Stack:

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output:
Stack: + |

Add the root to the stack

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +
Stack: X | +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X
Stack: + | - | +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+
Stack: 4 | 2 | - | +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+4
Stack: 2 | - | +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42
Stack: - | +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-
Stack: 6 | 5 | +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-6
Stack: 5 | +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65
Stack: +

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+
Stack: X | /

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X
Stack: 9 | 1 | /

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X9
Stack: 1 | /

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X91
Stack: /

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X91/
Stack: 3 | 6

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X91/3
Stack: 6

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X91/36
Stack:

Process the node and then add children (right then left)

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X91/36
Stack:

What does this evaluate to?

PREORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

Output: +X+42-65+X91/36
Stack:

What does this evaluate to?

6 1

6

9 0.5

9.5

15.5

PREORDER TRAVERSAL
•  Knowing the rule of preorder, is that

string ambiguous?
•  +X+42-65+X91/36

PREORDER TRAVERSAL
•  Knowing the rule of preorder, is that

string ambiguous?
•  +X+42-65+X91/36

•  Given that preorder traversal is DFS with
ordering:
•  Process, Left, Right

•  What string results from postorder?
•  Left Right Process?

POSTORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

POSTORDER TRAVERSAL
•  Pre-order

•  +X+42-65+X91/36
•  Post-order

•  42+65-X91X36/++

POSTORDER TRAVERSAL
•  Pre-order (Polish Notation)

•  +X+42-65+X91/36
•  Post-order (Reverse Polish Notation)

•  42+65-X91X36/++

POSTORDER TRAVERSAL
•  Pre-order (Polish Notation)

•  +X+42-65+X91/36
•  Post-order (Reverse Polish Notation)

•  42+65-X91X36/++
•  These are unambiguous strings

POSTORDER TRAVERSAL
•  Pre-order (Polish Notation)

•  +X+42-65+X91/36
•  Post-order (Reverse Polish Notation)

•  42+65-X91X36/++
•  These are unambiguous strings
•  What about the final ordering?

•  Left, Process, Right?

IN-ORDER TRAVERSAL
+

X

+

4 2

-

6 5

+

X

9 1

/

3 6

IN-ORDER TRAVERSAL
•  In-order

•  4+2X6-5+9X1+3/6

IN-ORDER TRAVERSAL
•  In-order

•  4+2X6-5+9X1+3/6
•  What is the problem here?

IN-ORDER TRAVERSAL

+

X

+

4

2 -

6 5

+

X

9 1

/

3 6

TRAVERSALS
•  In-order

•  4+2X6-5+9X1+3/6
•  What is the problem here?

•  There are multiple trees!

TRAVERSALS
•  In-order

•  4+2X6-5+9X1+3/6
•  What is the problem here?

•  There are multiple trees!
•  In order returns the left-to-right sorted

order
•  In-order traversal of a BST is sorted result

BALANCE AND HEIGHT
•  If the same data can be represented

multiple ways, what is best?

BALANCE AND HEIGHT

1

4

2

1 3

6

5 7

2

6

7

3

5

4

BALANCE AND HEIGHT
•  Height is key for how fast functions on

our tree are!
•  If we can structure the same data two

different ways, we want to choose the better
one.

•  Balanced is better for BSTs
•  Can we enforce balance?

BALANCE AND HEIGHT
•  Balance

BALANCE AND HEIGHT
•  Balance

•  How can we define balance?

BALANCE AND HEIGHT
•  Balance

•  How can we define balance?
•  Abs(height(left) – height(right))

BALANCE AND HEIGHT
•  Balance

•  How can we define balance?
•  Abs(height(left) – height(right))
•  If the heights of the left and right trees are

balanced, the tree is balanced.

BALANCE AND HEIGHT
•  Balance

•  How can we define balance?
•  Abs(height(left) – height(right))
•  If the heights of the left and right trees are

balanced, the tree is balanced.
•  Anything wrong with this?

BALANCE AND HEIGHT

BALANCE AND HEIGHT
•  Not enough for the root to be balanced!
•  All nodes must be balanced!
•  Ideally, our “balance” property will say:

•  For all nodes in the tree, height(left) =
height(right)

•  What is the problem with this?
•  Not always enforceable!

BALANCE AND HEIGHT
•  Consider adding an element to a tree.

•  When the tree is empty, it is balanced
•  We add one element

BALANCE AND HEIGHT
•  Consider adding an element to a tree.

•  When the tree is empty, it is balanced
•  We add one element

•  Height(left) = height(right) = 0

BALANCE AND HEIGHT
•  Consider adding an element to a tree.

•  When the tree is empty, it is balanced
•  We add one element

•  Height(left) = height(right) = 0
•  Add another element

BALANCE AND HEIGHT
•  Consider adding an element to a tree.

•  When the tree is empty, it is balanced
•  We add one element

•  Height(left) = height(right) = 0
•  Add another element

•  Oh no! There is no way to enforce balance!

BALANCE AND HEIGHT
•  New property

BALANCE AND HEIGHT
•  New property

•  If Abs(height(left) – height(right)) is balance
•  We can only enforce if this is <=1
•  That is, the height left and right subtrees can

differ by at most one
•  Still must preserve this for every node!

•  This is the AVL property
•  AVL Trees are Binary Search Trees that have the

AVL property

BALANCE AND HEIGHT
•  New property

•  If Abs(height(left) – height(right)) is balance
•  We can only enforce if this is <=1
•  That is, the height left and right subtrees can

differ by at most one
•  Still must preserve this for every node!

•  This is the AVL property
•  AVL Trees are Binary Search Trees that have the

AVL property
•  They have worst case O(log n) find!

REVIEW
7

4

3

2

5

6

10

9

8 11

12

14 •  Is this an AVL Tree?

13

REVIEW
7

4

3

2

5

6

10

9

8 11

12

14 •  Is this an AVL Tree?
•  Calculate balance for each node

13

REVIEW
7

4

3

2

5

6

10

9

8 11

12

14 •  Is this an AVL Tree?
•  Calculate balance for each node

13 0

1

0

1

0 0

1

1

1

1

0 1

0

REVIEW
7

4

3

2

5

6

10

9

8 11

12

14 •  Is this an AVL Tree? Yes!
•  Calculate balance for each node

13 0

1

0

1

0 0

1

1

1

1

0 1

0

•  What about this one?

REVIEW
6

2

1 4

3 5

8

7

9 11

12

10 13

•  What about this one?
•  No, 8 is out of balance

REVIEW
6

2

1 4

3 5

8

7

9 11

12

10 13

REVIEW
8

6

2

-1 5

7

9

11

15

•  Is this an AVL Tree?

REVIEW
8

6

2

-1 5

7

9

11

15

•  Is this an AVL Tree?
•  No, AVL trees must still maintain Binary Search

AVL OPERATIONS
•  Since AVL trees are also BST trees, they

should support the same functionality

AVL OPERATIONS
•  Since AVL trees are also BST trees, they

should support the same functionality
•  Insert(key k, value v)
•  Find(key k)
•  Delete(key k)

AVL OPERATIONS
•  Since AVL trees are also BST trees, they

should support the same functionality
•  Insert(key k, value v)
•  Find(key k): Same as BST!
•  Delete(key k)

AVL OPERATIONS
•  Since AVL trees are also BST trees, they

should support the same functionality
•  Insert(key k, value v)
•  Find(key k): Same as BST!
•  Delete(key k): Not presented in this course

AVL OPERATIONS
•  Since AVL trees are also BST trees, they

should support the same functionality
•  Insert(key k, value v)
•  Find(key k): Same as BST!
•  Delete(key k): Not presented in this course

•  For insert, we should maintain AVL property
as we build

AVL OPERATIONS
•  Since AVL trees are also BST trees, they

should support the same functionality
•  Insert(key k, value v)
•  Find(key k): Same as BST!
•  Delete(key k): Not presented in this course

•  For insert, we should maintain AVL property
as we build

AVL OPERATIONS
•  Insert(key k, value v):

AVL OPERATIONS
•  Insert(key k, value v):

•  Insert the key value pair into the dictionary

AVL OPERATIONS
•  Insert(key k, value v):

•  Insert the key value pair into the dictionary
•  Verify that balance is maintained

AVL OPERATIONS
•  Insert(key k, value v):

•  Insert the key value pair into the dictionary
•  Verify that balance is maintained
•  If not, correct the tree

AVL OPERATIONS
•  Insert(key k, value v):

•  Insert the key value pair into the dictionary
•  Verify that balance is maintained
•  If not, correct the tree

•  How do we correct the tree?

AVL INSERT

6

•  Start with the single root

AVL INSERT

6

•  Add 7 to the tree

7

AVL INSERT

6

•  Add 7 to the tree. Is balance preserved?

7

AVL INSERT

6

•  Add 7 to the tree. Is balance preserved?
•  Yes

7

1

0

AVL INSERT

6

•  Add 9 to the tree

7

9

AVL INSERT

6

•  Add 9 to the tree. Is balance preserved?

7

9

AVL INSERT

6

•  Add 9 to the tree. Is balance preserved?
•  No.

7

9 0

1

2

AVL INSERT

6

•  How do we correct this imbalance?

7

9 0

1

2

AVL INSERT

6

•  How do we correct this imbalance?
•  Important to preserve binary search

7

9 0

1

2

AVL INSERT

6

•  How do we correct this imbalance?
•  Important to preserve binary search

7

9 0

1

2

AVL INSERT

6

•  What shape do we want?

7

9 0

1

2

AVL INSERT

6

•  What shape do we want?

7

9 0

1

2

AVL INSERT

6

•  What shape do we want?
•  What then do we have as the root?

7

9 0

1

2

AVL INSERT

6

•  Since 7 must be the root, we “rotate” that node
into position.

7

9 0

0

0

AVL “ROTATION”
•  To correct this case:

•  B must become the root
A

B

C

AVL “ROTATION”
•  To correct this case:

•  B must become the root
•  We rotate B to the root position

A

B

C

AVL “ROTATION”
•  To correct this case:

•  B must become the root
•  We rotate B to the root position
•  A becomes the left child of B

A

B

C

A

B

C

AVL “ROTATION”
•  To correct this case:

•  B must become the root
•  We rotate B to the root position
•  A becomes the left child of B
•  This is called the “left rotation”

A

B

C

A

B

C

AVL “ROTATION”
•  Right rotation C

B

A

A

B

C

AVL “ROTATION”
•  Right rotation

•  Symmetric concept
C

B

A

A

B

C

AVL “ROTATION”
•  Right rotation

•  Symmetric concept
•  B must become the new root

C

B

A

A

B

C

AVL “ROTATION”
•  These are the “single” rotations

AVL “ROTATION”
•  These are the “single” rotations

•  In general, this rotation occurs when an
addition is made to the right-right or left-left
grandchild

AVL “ROTATION”
•  These are the “single” rotations

•  In general, this rotation occurs when an
addition is made to the right-right or left-left
grandchild

•  The balance might not be off on the
parent! An insert might upset balance up
the tree

AVL “ROTATION”
•  General case

•  Suppose this tree
is balanced, {X,Y,Z}
all have the same
height

C

B

Z

Y X

AVL “ROTATION”
•  General case

•  Suppose this tree
is balanced, {X,Y,Z}
all have the same
height

•  Adding A, puts C out
of balance

C

B

A

Z

Y X

1

2

AVL “ROTATION”
•  General case

•  Suppose this tree
is balanced, {X,Y,Z}
all have the same
height

•  Adding A, puts C out
of balance

•  Rotate B up and pass
the Y subtree to C

C

B

A

Z

Y X

1

2

AVL “ROTATION”
•  General case

•  Suppose this tree
is balanced, {X,Y,Z}
all have the same
height

•  Adding A, puts C out
of balance

•  Rotate B up and pass
the Y subtree to C

C

B

A

Z Y
X

0

0

AVL “ROTATION”
•  General case

•  Suppose this tree
is balanced, {X,Y,Z}
all have the same
height

•  Adding A, puts C out
of balance

•  Rotate B up and pass
the Y subtree to C

•  Perform this rotation at the lowest point
of imbalance

C

B

A

Z Y
X

0

0

SINGLE ROTATION EXAMPLE

•  Consider the above tree

10 4

22 8

15

19

17 20

24

SINGLE ROTATION EXAMPLE

•  Consider the above tree
•  Is it an AVL tree?

10 4

22 8

15

19

17 20

24

SINGLE ROTATION EXAMPLE

•  Consider the above tree
•  Is it an AVL tree? Yes

10 4

22 8

15

19

17 20

24

SINGLE ROTATION EXAMPLE

•  Add 16 to the tree

10 4

22 8

15

19

17 20

24

16

SINGLE ROTATION EXAMPLE

•  Add 16 to the tree
•  Is it unbalanced now?

10 4

22 8

15

19

17 20

24

16

SINGLE ROTATION EXAMPLE

•  Add 16 to the tree
•  Is it unbalanced now? Where?

10 4

22 8

15

19

17 20

24

16

SINGLE ROTATION EXAMPLE

•  Add 16 to the tree
•  Is it unbalanced now? Where? 22

10 4

22 8

15

19

17 20

24

16

1

1

0

0

2

SINGLE ROTATION EXAMPLE

•  Add 16 to the tree
•  Is it unbalanced now? Where? 22
•  Also at 15, but we choose the lowest point

10 4

22 8

15

19

17 20

24

16

1

1

0

0

2

0 0

0

2

SINGLE ROTATION EXAMPLE

•  Perform the rotation around 22

10 4

22 8

15

19

17 20

24

16

1

1

0

0

2

0 0

0

2

SINGLE ROTATION EXAMPLE

•  Perform the rotation around 22
•  What rotation takes place?

10 4

22 8

15

19

17 20

24

16

1

1

0

0

2

0 0

0

2

SINGLE ROTATION EXAMPLE

•  Perform the rotation around 22
•  What rotation takes place?

10 4

22 8

15

19

17 20

24

16

1

1

0

0

2

0 0

0

2

C

B

A

Z

Y X

1

2

SINGLE ROTATION EXAMPLE

•  Perform the rotation around 22
•  What rotation takes place?
•  What is the resulting tree?

10 4

22 8

15

19

17 20

24

16

1

1

0

0

2

0 0

0

2

SINGLE ROTATION EXAMPLE

•  19 must move up to where 22 was
•  20 changes parents
•  Balances are recomputed throughout the tree

10 4

19 8

15

17

16 20

22

0

1

0

0

0

0 0

0

1

24 0

AVL “ROTATION”
•  These two rotations (right-right and left-

left) are symmetric and can be solved the
same way

AVL “ROTATION”
•  These two rotations (right-right and left-

left) are symmetric and can be solved the
same way
•  Named by the location of the added node

relative to the unbalanced node

