
CSE 373 
OCTOBER 11TH – TRAVERSALS AND AVL 



MINUTIAE 
•  Feedback for P1p1 should have gone out 

before class 
•  Grades on canvas tonight 
•  Emails went to the student who submitted 

the assignment 
•  If you did not receive an email, it is because 

your code didn’t compile. Verify that you 
submitted the correct files on canvas and 
contact me 



MINUTIAE 
•  HW2 out tonight 

•  Written assignment 
•  Analysis and bigO 
•  Should be simple, opportunity to get 

feedback on written problems before the 
midterm 



MINUTIAE 
•  P1 student feedback 

•  New project this quarter 
•  Opening anonymous survey tonight 
•  How long did you spend? 
•  Which parts of the project were poorly 

explained? 
•  What did you get out of the project? 



MINUTIAE 
•  Because of the number of problems with 

the project, I have decided to increase the 
number of late days to 4. 
•  If you’ve already completed this project, you 

can use it on a later date, but this gives you a 
little more leeway to complete this 
assignment. 

•  Late days will be accurate tonight when your 
canvas grade is posted. 



TODAY’S LECTURE 
•  Traversal review 

•  DFS/BFS/Pre/In/Post order 
•  Memory Analysis 
•  AVL Trees and how to balance 



DEPTH FIRST SEARCH 
•  All tree traversals start at the root 
•  As the name implies, traverse down the 

tree first. 
•  Left or right does not explicitly matter, 

but left usually comes first. 



DEPTH FIRST SEARCH 

How do we search this tree? 



DEPTH FIRST SEARCH 

Left node first 



DEPTH FIRST SEARCH 

Keep going down the left nodes 



DEPTH FIRST SEARCH 

Until you reach the bottom 



DEPTH FIRST SEARCH 

What next? 



DEPTH FIRST SEARCH 

Need some way to indicate that 
you are completely searched 

 (tell the parent) 



DEPTH FIRST SEARCH 

Parent now knows it is can search 
the other child 



DEPTH FIRST SEARCH 

Leaves are searched when their 
data is observed 



DEPTH FIRST SEARCH 

Now that both of its children have 
been completely searched 



DEPTH FIRST SEARCH 

It needs to indicate that to its 
parent 



DEPTH FIRST SEARCH 

That parent then knows to search 
its right child 



DEPTH FIRST SEARCH 

That parent then knows to search 
its right child 



DEPTH FIRST SEARCH 

This process repeats 



DEPTH FIRST SEARCH 

This process repeats 



DEPTH FIRST SEARCH 

This process repeats 



DEPTH FIRST SEARCH 

This process repeats 



DEPTH FIRST SEARCH 

This process repeats 



DEPTH FIRST SEARCH 

This process repeats 



DEPTH FIRST SEARCH 

This process repeats 



DEPTH FIRST SEARCH 

Now the left tree is completely 
searched and we can search the 

 right 



DEPTH FIRST SEARCH 

On the new subtree, we begin 
search from the left 



DEPTH FIRST SEARCH 

On the new subtree, we begin 
search from the left 



DEPTH FIRST SEARCH 

And we find the object we’re 
looking for 



DEPTH FIRST SEARCH 
•  How does this work in application? 

•  For each node, it searches its left subtree 
entirely and then moves to the right tree 

•  Here search works by breaking the 
problem down into sub-problems 

•  This is a good indication that we use 
recursion 



DEPTH FIRST SEARCH 
•  Treat each subtree as a subproblem and 

solve recursively. 
•  Will go to maximum depth first. 
•  When the node is found, the result will 

return up the stack 
•  What might be a different approach? 



ALTERNATE APPROACH 

How else to traverse? 



ALTERNATE APPROACH 

Search the tree from top to bottom 



BREADTH FIRST SEARCH 
•  Consider the approach 

•  Start with the root 
•  Search all nodes of depth 1 
•  Search all nodes of depth 2 
•  … 
•  How do we get this ordering? 



BREADTH FIRST SEARCH 
•  What if we use a Queue? 

•  Enqueue the root 
•  Then what? 



BREADTH FIRST SEARCH 
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Queue:  



BREADTH FIRST SEARCH 
•  What if we use a Queue? 
enqueue the root  
 
while the queue has elements:  

"dequeue the node  
"if it matches our search string  
" "return true"

"if it doesn’t,  
" "enqueue its non-null children  

return false;"



BREADTH FIRST SEARCH 

A

B

D

H I 

E

J K

C

F 

L M

G

N O

dequeue and check the node 

Queue:  



BREADTH FIRST SEARCH 
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enqueue the children 

Queue:  B | C | 



BREADTH FIRST SEARCH 
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repeat 

Queue:  B | C | 



BREADTH FIRST SEARCH 

A

B

D

H I 

E

J K

C

F 

L M

G

N O

Queue:   C | D | E | 



BREADTH FIRST SEARCH 
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Queue:   D | E | F | G | 



BREADTH FIRST SEARCH 

A

B

D

H I 

E

J K

C

F 

L M

G

N O

Queue:   E | F | G | H | I | 



BREADTH FIRST SEARCH 
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Queue:   F | G | H | I | J | K | 



BREADTH FIRST SEARCH 
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Queue:   G | H | I | J | K | L | M 



BREADTH FIRST SEARCH 
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Queue:   H | I | J | K | L | M | N | O 



BREADTH FIRST SEARCH 
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Queue:   I | J | K | L | M | N | O 



BREADTH FIRST SEARCH 
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Queue:   J | K | L | M | N | O 



BREADTH FIRST SEARCH 
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Queue:   K | L | M | N | O 



BREADTH FIRST SEARCH 
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Queue:   L | M | N | O 



BREADTH FIRST SEARCH 
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Queue:   L | M | N | O 

And now we’ve found it! 



REVIEW 
•  Breadth First Search 

•  Enqueue the root 
•  While the queue has elements 

•  Dequeue 
•  Process 
•  Enqueue children 

•  How much memory does this take? 



SEARCH MEMORY USE 

•  When does the queue have the most elements? 



SEARCH MEMORY USE 

•  At the widest point in the traversal 



SEARCH MEMORY USE 

•  At the widest point in the traversal 
•  How many elements is this? 



SEARCH MEMORY USE 
•  Breadth First Search 

•  In a perfect tree (where every row is 
complete) of size n, how many elements 
are in the last row? 



SEARCH MEMORY USE 
•  Breadth First Search 

•  In a perfect tree (where every row is 
complete) of size n, how many elements 
are in the last row? 

•  N/2 



SEARCH MEMORY USE 
•  Breadth First Search 

•  In a perfect tree (where every row is 
complete) of size n, how many elements 
are in the last row? 

•  ceiling(N/2) 



SEARCH MEMORY USE 
•  Breadth First Search 

•  In a perfect tree (where every row is 
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are in the last row? 

•  ceiling(N/2), this is important to know! 



SEARCH MEMORY USE 
•  Breadth First Search 

•  In a perfect tree (where every row is 
complete) of size n, how many elements 
are in the last row? 

•  ceiling(N/2), this is important to know! 
•  O(n) memory usage! 



SEARCH MEMORY USE 
•  What about depth first search? 

•  When does the stack have the most 
elements on it? 



SEARCH MEMORY USE 

•  When does the stack have the most elements? 
•  When it’s at the bottom 



SEARCH MEMORY USE 

•  When does the stack have the most elements? 
•  When it’s at the bottom 



SEARCH MEMORY USE 
•  How many elements are in the stack in 

this worst case? 



SEARCH MEMORY USE 
•  How many elements are in the stack in 

this worst case? 
•  The height of the tree 
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this worst case? 
•  The height of the tree, O(n) if the tree is one-

sided, but O(log n) if the tree is balanced 



SEARCH MEMORY USE 
•  How many elements are in the stack in 

this worst case? 
•  The height of the tree, O(n) if the tree is one-

sided, but O(log n) if the tree is balanced 
•  We will discuss balance later 



SEARCH MEMORY USE 
•  How many elements are in the stack in 

this worst case? 
•  The height of the tree, O(n) if the tree is one-

sided, but O(log n) if the tree is balanced 
•  We will discuss balance later 
•  Classic exam question! Consider memory 

AND execution times 



REVIEW 
•  Ordering 

•  What is the difference between these three 
implementations 

•  Process; DFS(left); DFS(right) 
•  DFS(left); Process; DFS(right) 
•  DFS(left); DFS(right); Process 

•  How does this impact the final output? 



REVIEW 
•  Ordering 

•  Three traversal types 
•  Pre-order 
•  In-order 
•  Post-order 

•  Instruction (Parse) trees 



PREORDER TRAVERSAL 
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Output: 
Stack: 



PREORDER TRAVERSAL 
+ 

X

+ 

4 2 
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Output: 
Stack:  + | 

Add the root to the stack 



PREORDER TRAVERSAL 
+ 

X
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Output:  +  
Stack:  X | + 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
+ 

X

+ 

4 2 
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6 5 
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X

9 1 
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3 6 

Output:  +X  
Stack:  + | - | + 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
+ 

X

+ 

4 2 

- 

6 5 

+ 

X

9 1 

/ 

3 6 

Output:  +X+  
Stack:  4 | 2 | - | + 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
+ 

X

+ 

4 2 
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6 5 

+ 

X

9 1 

/ 

3 6 

Output:  +X+4  
Stack:  2 | - | + 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
+ 

X

+ 

4 2 
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3 6 

Output:  +X+42  
Stack:  - | + 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
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Output:  +X+42-  
Stack:  6 | 5 | + 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
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Output:  +X+42-6  
Stack:  5 | + 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
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Output:  +X+42-65  
Stack:  + 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
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Output:  +X+42-65+  
Stack:  X | / 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
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Output:  +X+42-65+X  
Stack:  9 | 1 | / 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
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Output:  +X+42-65+X9  
Stack:  1 | / 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
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Output:  +X+42-65+X91  
Stack:  / 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
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Output:  +X+42-65+X91/  
Stack:  3 | 6 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
+ 

X
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4 2 
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6 5 
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9 1 

/ 

3 6 

Output:  +X+42-65+X91/3  
Stack:  6 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
+ 

X

+ 

4 2 
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X

9 1 
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3 6 

Output:  +X+42-65+X91/36  
Stack: 

Process the node and then add children (right then left) 



PREORDER TRAVERSAL 
+ 

X
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4 2 
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6 5 
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X

9 1 
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3 6 

Output:  +X+42-65+X91/36  
Stack: 

What does this evaluate to? 



PREORDER TRAVERSAL 
+ 

X

+ 

4 2 

- 

6 5 

+ 

X

9 1 

/ 

3 6 

Output:  +X+42-65+X91/36  
Stack: 

What does this evaluate to? 

6 1 

6 

9 0.5 

9.5 

15.5 



PREORDER TRAVERSAL 
•  Knowing the rule of preorder, is that 

string ambiguous? 
•  +X+42-65+X91/36 

 



PREORDER TRAVERSAL 
•  Knowing the rule of preorder, is that 

string ambiguous? 
•  +X+42-65+X91/36 

•  Given that preorder traversal is DFS with 
ordering: 
•  Process, Left, Right 

•  What string results from postorder? 
•  Left Right Process? 

 



POSTORDER TRAVERSAL 
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POSTORDER TRAVERSAL 
•  Pre-order  

•  +X+42-65+X91/36 
•  Post-order  

•  42+65-X91X36/++ 
 

 



POSTORDER TRAVERSAL 
•  Pre-order (Polish Notation) 

•  +X+42-65+X91/36 
•  Post-order (Reverse Polish Notation) 

•  42+65-X91X36/++ 

 



POSTORDER TRAVERSAL 
•  Pre-order (Polish Notation) 

•  +X+42-65+X91/36 
•  Post-order (Reverse Polish Notation) 

•  42+65-X91X36/++ 
•  These are unambiguous strings 

 



POSTORDER TRAVERSAL 
•  Pre-order (Polish Notation) 

•  +X+42-65+X91/36 
•  Post-order (Reverse Polish Notation) 

•  42+65-X91X36/++ 
•  These are unambiguous strings 
•  What about the final ordering? 

•  Left, Process, Right? 

 



IN-ORDER TRAVERSAL 
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IN-ORDER TRAVERSAL 
•  In-order 

•  4+2X6-5+9X1+3/6 

 



IN-ORDER TRAVERSAL 
•  In-order 

•  4+2X6-5+9X1+3/6 
•  What is the problem here? 

 



IN-ORDER TRAVERSAL 
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TRAVERSALS 
•  In-order 

•  4+2X6-5+9X1+3/6 
•  What is the problem here? 

•  There are multiple trees! 

 



TRAVERSALS 
•  In-order 

•  4+2X6-5+9X1+3/6 
•  What is the problem here? 

•  There are multiple trees! 
•  In order returns the left-to-right sorted 

order 
•  In-order traversal of a BST is sorted result 

 



BALANCE AND HEIGHT 
•  If the same data can be represented 

multiple ways, what is best? 

 



BALANCE AND HEIGHT 
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BALANCE AND HEIGHT 
•  Height is key for how fast functions on 

our tree are! 
•  If we can structure the same data two 

different ways, we want to choose the better 
one.  

•  Balanced is better for BSTs 
•  Can we enforce balance? 

 



BALANCE AND HEIGHT 
•  Balance 

 



BALANCE AND HEIGHT 
•  Balance 

•  How can we define balance? 

 



BALANCE AND HEIGHT 
•  Balance 

•  How can we define balance? 
•  Abs(height(left) – height(right)) 

 



BALANCE AND HEIGHT 
•  Balance 

•  How can we define balance? 
•  Abs(height(left) – height(right)) 
•  If the heights of the left and right trees are 

balanced, the tree is balanced. 

 



BALANCE AND HEIGHT 
•  Balance 

•  How can we define balance? 
•  Abs(height(left) – height(right)) 
•  If the heights of the left and right trees are 

balanced, the tree is balanced. 
•  Anything wrong with this? 

 



BALANCE AND HEIGHT 



BALANCE AND HEIGHT 
•  Not enough for the root to be balanced! 
•  All nodes must be balanced! 
•  Ideally, our “balance” property will say: 

•  For all nodes in the tree, height(left) = 
height(right) 

•  What is the problem with this? 
•  Not always enforceable! 

 



BALANCE AND HEIGHT 
•  Consider adding an element to a tree. 

•  When the tree is empty, it is balanced 
•  We add one element 

 



BALANCE AND HEIGHT 
•  Consider adding an element to a tree. 

•  When the tree is empty, it is balanced 
•  We add one element 

•  Height(left) = height(right) = 0 

 



BALANCE AND HEIGHT 
•  Consider adding an element to a tree. 

•  When the tree is empty, it is balanced 
•  We add one element 

•  Height(left) = height(right) = 0 
•  Add another element 

 



BALANCE AND HEIGHT 
•  Consider adding an element to a tree. 

•  When the tree is empty, it is balanced 
•  We add one element 

•  Height(left) = height(right) = 0 
•  Add another element 

•  Oh no! There is no way to enforce balance! 

 



BALANCE AND HEIGHT 
•  New property 

 



BALANCE AND HEIGHT 
•  New property 

•  If Abs(height(left) – height(right)) is balance 
•  We can only enforce if this is <=1 
•  That is, the height left and right subtrees can 

differ by at most one 
•  Still must preserve this for every node! 

•  This is the AVL property 
•  AVL Trees are Binary Search Trees that have the 

AVL property 

 



BALANCE AND HEIGHT 
•  New property 

•  If Abs(height(left) – height(right)) is balance 
•  We can only enforce if this is <=1 
•  That is, the height left and right subtrees can 

differ by at most one 
•  Still must preserve this for every node! 

•  This is the AVL property 
•  AVL Trees are Binary Search Trees that have the 

AVL property 
•  They have worst case O(log n) find! 

 



REVIEW 
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•  Calculate balance for each node 
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14 •  Is this an AVL Tree? 
•  Calculate balance for each node 
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REVIEW 
7 

4 

3 

2 

5 

6 

10 

9 

8 11 

12 

14 •  Is this an AVL Tree? Yes! 
•  Calculate balance for each node 
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•  What about this one? 

REVIEW 
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•  What about this one? 
•  No, 8 is out of balance 

REVIEW 
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REVIEW 
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•  Is this an AVL Tree? 



REVIEW 
8 
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-1 5 
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15 

•  Is this an AVL Tree? 
•  No, AVL trees must still maintain Binary Search 



AVL OPERATIONS 
•  Since AVL trees are also BST trees, they 

should support the same functionality 



AVL OPERATIONS 
•  Since AVL trees are also BST trees, they 

should support the same functionality 
•  Insert(key k, value v) 
•  Find(key k) 
•  Delete(key k) 
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should support the same functionality 
•  Insert(key k, value v) 
•  Find(key k): Same as BST! 
•  Delete(key k): Not presented in this course 



AVL OPERATIONS 
•  Since AVL trees are also BST trees, they 

should support the same functionality 
•  Insert(key k, value v) 
•  Find(key k): Same as BST! 
•  Delete(key k): Not presented in this course 

•  For insert, we should maintain AVL property 
as we build 



AVL OPERATIONS 
•  Since AVL trees are also BST trees, they 

should support the same functionality 
•  Insert(key k, value v) 
•  Find(key k): Same as BST! 
•  Delete(key k): Not presented in this course 

•  For insert, we should maintain AVL property 
as we build 



AVL OPERATIONS 
•  Insert(key k, value v): 



AVL OPERATIONS 
•  Insert(key k, value v): 

•  Insert the key value pair into the dictionary 



AVL OPERATIONS 
•  Insert(key k, value v): 

•  Insert the key value pair into the dictionary 
•  Verify that balance is maintained 



AVL OPERATIONS 
•  Insert(key k, value v): 

•  Insert the key value pair into the dictionary 
•  Verify that balance is maintained 
•  If not, correct the tree 



AVL OPERATIONS 
•  Insert(key k, value v): 

•  Insert the key value pair into the dictionary 
•  Verify that balance is maintained 
•  If not, correct the tree 

•  How do we correct the tree? 



AVL INSERT 

6 

•  Start with the single root 



AVL INSERT 

6 

•  Add 7 to the tree 

7 



AVL INSERT 

6 

•  Add 7 to the tree. Is balance preserved? 

7 



AVL INSERT 

6 

•  Add 7 to the tree. Is balance preserved? 
•  Yes 

7 

1 

0 



AVL INSERT 

6 

•  Add 9 to the tree 
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9 



AVL INSERT 

6 

•  Add 9 to the tree. Is balance preserved? 

7 

9 



AVL INSERT 

6 

•  Add 9 to the tree. Is balance preserved? 
•  No. 
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AVL INSERT 

6 

•  How do we correct this imbalance? 

7 

9 0 

1 

2 



AVL INSERT 

6 

•  How do we correct this imbalance? 
•  Important to preserve binary search 
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AVL INSERT 

6 

•  How do we correct this imbalance? 
•  Important to preserve binary search 
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AVL INSERT 

6 

•  What shape do we want? 
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AVL INSERT 

6 

•  What shape do we want? 
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AVL INSERT 

6 

•  What shape do we want? 
•  What then do we have as the root? 
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2 



AVL INSERT 

6 

•  Since 7 must be the root, we “rotate” that node 
into position. 
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AVL “ROTATION” 
•  To correct this case: 

•  B must become the root 
A

B

C



AVL “ROTATION” 
•  To correct this case: 

•  B must become the root 
•  We rotate B to the root position 
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AVL “ROTATION” 
•  To correct this case: 

•  B must become the root 
•  We rotate B to the root position 
•  A becomes the left child of B 
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AVL “ROTATION” 
•  To correct this case: 

•  B must become the root 
•  We rotate B to the root position 
•  A becomes the left child of B 
•  This is called the “left rotation” 
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AVL “ROTATION” 
•  Right rotation C 
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AVL “ROTATION” 
•  Right rotation 

•  Symmetric concept 
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AVL “ROTATION” 
•  Right rotation 

•  Symmetric concept 
•  B must become the new root 
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•  These are the “single” rotations 

•  In general, this rotation occurs when an 
addition is made to the right-right or left-left 
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AVL “ROTATION” 
•  These are the “single” rotations 

•  In general, this rotation occurs when an 
addition is made to the right-right or left-left 
grandchild 

•  The balance might not be off on the 
parent! An insert might upset balance up 
the tree 



AVL “ROTATION” 
•  General case 

•  Suppose this tree 
is balanced, {X,Y,Z} 
all have the same 
height 
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AVL “ROTATION” 
•  General case 

•  Suppose this tree 
is balanced, {X,Y,Z} 
all have the same 
height 

•  Adding A, puts C out 
of balance 
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AVL “ROTATION” 
•  General case 

•  Suppose this tree 
is balanced, {X,Y,Z} 
all have the same 
height 

•  Adding A, puts C out 
of balance 

•  Rotate B up and pass 
the Y subtree to C 
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AVL “ROTATION” 
•  General case 

•  Suppose this tree 
is balanced, {X,Y,Z} 
all have the same 
height 

•  Adding A, puts C out 
of balance 

•  Rotate B up and pass 
the Y subtree to C 
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AVL “ROTATION” 
•  General case 

•  Suppose this tree 
is balanced, {X,Y,Z} 
all have the same 
height 

•  Adding A, puts C out 
of balance 

•  Rotate B up and pass 
the Y subtree to C 

•  Perform this rotation at the lowest point 
of imbalance 
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SINGLE ROTATION EXAMPLE 

•  Consider the above tree 

10  4 

22  8 

15 

19 

17 20 

24 
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•  Consider the above tree 
•  Is it an AVL tree? 
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SINGLE ROTATION EXAMPLE 

•  Consider the above tree 
•  Is it an AVL tree? Yes 
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SINGLE ROTATION EXAMPLE 

•  Add 16 to the tree 
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SINGLE ROTATION EXAMPLE 

•  Add 16 to the tree 
•  Is it unbalanced now? 
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SINGLE ROTATION EXAMPLE 

•  Add 16 to the tree 
•  Is it unbalanced now? Where? 
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SINGLE ROTATION EXAMPLE 

•  Add 16 to the tree 
•  Is it unbalanced now? Where? 22 
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SINGLE ROTATION EXAMPLE 

•  Add 16 to the tree 
•  Is it unbalanced now? Where? 22 
•  Also at 15, but we choose the lowest point 
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SINGLE ROTATION EXAMPLE 

•  Perform the rotation around 22 
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SINGLE ROTATION EXAMPLE 

•  Perform the rotation around 22 
•  What rotation takes place? 

10  4 

22  8 

15 

19 

17 20 

24 

16 

1 

1 

0 

0 

2 

0 0 

0 

2 



SINGLE ROTATION EXAMPLE 

•  Perform the rotation around 22 
•  What rotation takes place? 
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SINGLE ROTATION EXAMPLE 

•  Perform the rotation around 22 
•  What rotation takes place? 
•  What is the resulting tree? 
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SINGLE ROTATION EXAMPLE 

•  19 must move up to where 22 was 
•  20 changes parents 
•  Balances are recomputed throughout the tree 
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AVL “ROTATION” 
•  These two rotations (right-right and left-

left) are symmetric and can be solved the 
same way 



AVL “ROTATION” 
•  These two rotations (right-right and left-

left) are symmetric and can be solved the 
same way 
•  Named by the location of the added node 

relative to the unbalanced node 


