
CSE 373
OCTOBER 9TH – AMORTIZED ANALYSIS

TODAY
•  Master Theorem
•  Amortized Analysis
•  Binary Search Trees

REVIEW
•  Algorithm Analysis

•  Asymptotic behavior

REVIEW
•  Algorithm Analysis

•  Asymptotic behavior
•  Loops and iterations

REVIEW
•  Algorithm Analysis

•  Asymptotic behavior
•  Loops and iterations
•  Recursive functions

REVIEW
•  Algorithm Analysis

•  Asymptotic behavior
•  Loops and iterations
•  Recursive functions

•  Recurrence relations

ANALYSIS
•  On Friday, we showed the formal recurrence

approach
•  Break into recursive, non-recursive
•  Compute non-recursive computation time
•  Produce the recurrence
•  Roll out the recurrence and produce the closed

form
•  Upper-bound the closed form with bigO notation

ANALYSIS
•  While this process is important, we can save

some steps if all we care about is the upper
bound

•  bigO notation eliminates the need for constants
•  Lots of our messing around with c0 and c1 doesn’t

come through to the solution

ANALYSIS
•  Master theorem

•  These recurrences all follow a similar pattern

ANALYSIS
•  Master theorem

•  These recurrences all follow a similar pattern
•  Therefore, if you can produce a recurrence, there

is actually a procedural way to produce solutions

ANALYSIS
•  Master theorem

•  These recurrences all follow a similar pattern
•  Therefore, if you can produce a recurrence, there

is actually a procedural way to produce solutions
•  If T(n) = a*T(n/b)+nc for n > n0 and if the base

case is a constant

ANALYSIS
•  Master theorem

•  These recurrences all follow a similar pattern
•  Therefore, if you can produce a recurrence, there

is actually a procedural way to produce solutions
•  If T(n) = a*T(n/b)+nc for n > n0 and if the base

case is a constant
•  Case 1: logb(a) < c: T(n) = O(nc)
•  Case 2: logb(a) = c: T(n) = O(nc lg n)

•  Case 3: logb(a) > c: T(n) = O(nlog a)

ANALYSIS

•  Recurrences come up all the time

ANALYSIS

•  Recurrences come up all the time
•  Analyze methods and iterative approaches

through the normal methods
•  Recursive functions use a recurrence
•  Possible to get to bigO solution quickly
•  Usually for worst-case analysis

ANALYSIS

•  Final analysis type

ANALYSIS

•  Final analysis type
•  Worst-case

ANALYSIS

•  Final analysis type
•  Worst-case

•  Consider adding to an unsorted array

ANALYSIS

•  Final analysis type
•  Worst-case

•  Consider adding to an unsorted array
•  Resizing is the costly O(n) operation

ANALYSIS

•  Final analysis type
•  Worst-case

•  Consider adding to an unsorted array
•  Resizing is the costly O(n) operation
•  This occurs in predictable ways

ANALYSIS

•  Final analysis type
•  Worst-case

•  Consider adding to an unsorted array
•  Resizing is the costly O(n) operation
•  This occurs in predictable ways
•  Do these types of operations really slow down

the function?

AMORTIZED ANALYSIS

•  Adding to unsorted array

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  How long does it take to add n elements into the

array?

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  How long does it take to add n elements into the

array?
•  Let’s say the array is full with n elements and we

add n more

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  How long does it take to add n elements into the

array?
•  Let’s say the array is full with n elements and we

add n more
•  It takes n-1*O(1) + 1*O(n) = O(n)

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  How long does it take to add n elements into the

array?
•  Let’s say the array is full with n elements and we

add n more
•  It takes n-1*O(1) + 1*O(n) = O(n)
•  Amortized over the whole set of operations, each

one is only O(1) time

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  How long does it take to add n elements into the

array?
•  Let’s say the array is full with n elements and we

add n more
•  It takes n-1*O(1) + 1*O(n) = O(n)
•  Amortized over the whole set of operations, each

one is only O(1) time
•  What does this depend on?

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  How long does it take to add n elements into the

array?
•  Let’s say the array is full with n elements and we

add n more
•  It takes n-1*O(1) + 1*O(n) = O(n)
•  Amortized over the whole set of operations, each

one is only O(1) time
•  What does this depend on?

•  Doubling the array

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  What if we only add some constant number to the

array?
•  Let’s resize and add 10,000 elements every time
•  How long does it take to add n elements?
•  n-n/10,000*O(1) + n/10,000*O(n)

AMORTIZED ANALYSIS

•  Adding to unsorted array
•  What if we only add some constant number to the

array?
•  Let’s resize and add 10,000 elements every time
•  How long does it take to add n elements?
•  n-n/10,000*O(1) + n/10,000*O(n) = O(n2)
•  This is for any constant, regardless of how large

AMORTIZED ANALYSIS

•  Amortization the average runtime over
repeated calls to the same function

AMORTIZED ANALYSIS

•  Amortization the average runtime over
repeated calls to the same function
•  If the worst case happens in predictable ways (i.e.

every n inserts), then the costly operation doesn’t
increase the total asymptotic runtime of multiple
operations

AMORTIZED ANALYSIS

•  Amortization the average runtime over
repeated calls to the same function
•  If the worst case happens in predictable ways (i.e.

every n inserts), then the costly operation doesn’t
increase the total asymptotic runtime of multiple
operations

•  Over n operations, remember to divide the total
runtime by n

DICTIONARIES
•  Back to the dictionary problem

•  Can we apply these analytical tools to
some simple implementations?

IMPLEMENTATIONS
•  Simple implementations

IMPLEMENTATIONS
•  Simple implementations
	
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 insert find delete

Unsorted	 linked-‐list	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Unsorted	 array	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Sorted	 linked	 list	

Sorted	 array	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
*	 Because	 we	 need	 to	 check	 for	 duplicates	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

O(n)*	 O(n)	 O(n)	

O(n)*	 O(n)	 O(n)	

O(n)	 O(n)	 O(n)	

O(n)	 O(log	 n)	 O(n)	

IMPLEMENTATIONS
•  Other implementations?

IMPLEMENTATIONS
•  Other implementations?

•  Binary Search Tree (BST)

IMPLEMENTATIONS
•  Other implementations?

•  Binary Search Tree (BST)
•  Sort based on keys (which have to be comparable)

IMPLEMENTATIONS
•  Other implementations?

•  Binary Search Tree (BST)
•  Sort based on keys (which have to be comparable)
•  How do we implement this?

BINARY SEARCH TREE
•  Review

BINARY SEARCH TREE
•  Review

•  What is a binary search tree?

BINARY SEARCH TREE
•  Review

•  What is a binary search tree?
•  A rooted tree, where each node has at most two children

BINARY SEARCH TREE
•  Review

•  What is a binary search tree?
•  A rooted tree, where each node has at most two children
•  All elements less than the root are in the left subtree and all

elements larger than the root are in the right subtree

BINARY SEARCH TREE
•  Review

•  What is a binary search tree?
•  A rooted tree, where each node has at most two children
•  All elements less than the root are in the left subtree and all

elements larger than the root are in the right subtree
•  All, subtrees must also be binary search trees

BINARY SEARCH TREE
•  Review

•  What is a binary search tree?
•  A rooted tree, where each node has at most two children
•  All elements less than the root are in the left subtree and all

elements larger than the root are in the right subtree
•  All, subtrees must also be binary search trees

•  With this property, all binary search trees have sorted in-order
traversals

IMPLEMENTATIONS
•  Other implementations?

•  Binary Search Tree (BST)
•  Sort based on keys (which have to be comparable)
•  How do we implement this?
•  What changes need to be made?

IMPLEMENTATIONS
•  BST Node:

•  Before:

IMPLEMENTATIONS
•  BST Node:

•  Before:
•  Node left
•  Node right
•  Value data

IMPLEMENTATIONS
•  BST Node:

•  Before:
•  Node left
•  Node right
•  Value data

•  Now?

IMPLEMENTATIONS
•  BST Node:

•  Before:
•  Node left
•  Node right
•  Value data

•  Now?
•  Node left
•  Node right

IMPLEMENTATIONS
•  BST Node:

•  Before:
•  Node left
•  Node right
•  Value data

•  Now?
•  Node left
•  Node right
•  Key k
•  Value v

IMPLEMENTATIONS
•  BST Changes:

•  Insert() and find() remain similar

IMPLEMENTATIONS
•  BST Changes:

•  Insert() and find() remain similar
•  Key is the primary comparison

IMPLEMENTATIONS
•  BST Changes:

•  Insert() and find() remain similar
•  Key is the primary comparison
•  Value is attached to the key

IMPLEMENTATIONS
•  BST Changes:

•  Insert() and find() remain similar
•  Key is the primary comparison
•  Value is attached to the key
•  Dictionary fact: All values have an associated key

IMPLEMENTATIONS
•  BST Changes:

•  Insert() and find() remain similar
•  Key is the primary comparison
•  Value is attached to the key
•  Dictionary fact: All values have an associated key
•  All keys are unique, i.e. each key only has one value

IMPLEMENTATIONS
•  BST Analysis:

•  What is our time for the three functions?

IMPLEMENTATIONS
•  BST Analysis:

•  What is our time for the three functions?
•  Insert()? Delete()? Find()?
•  Consider best and worst-case.
•  What are the inputs for best and worst-case?

IMPLEMENTATIONS
•  BST Analysis:

•  Insert():

IMPLEMENTATIONS
•  BST Analysis:

•  Insert():
•  Worst case:

IMPLEMENTATIONS
•  BST Analysis:

•  Insert():
•  Worst case: O(n)

IMPLEMENTATIONS
•  BST Analysis:

•  Insert():
•  Worst case: O(n). What is this worst case?

IMPLEMENTATIONS
•  BST Analysis:

•  Insert():
•  Worst case: O(n)
•  Best case:

IMPLEMENTATIONS
•  BST Analysis:

•  Insert():
•  Worst case: O(n)
•  Best case: O(1)
•  What is the general case here?

•  What does the runtime for a particular insert
depend on?

•  Height of the tree

HEIGHT REVIEW
•  Height

HEIGHT REVIEW
•  Height

•  In this class, we set the height of an empty tree to
be equal to -1

HEIGHT REVIEW
•  Height

•  In this class, we set the height of an empty tree to
be equal to -1

•  This makes the height of a single node 0

HEIGHT REVIEW
•  Height

•  In this class, we set the height of an empty tree to
be equal to -1

•  This makes the height of a single node 0
•  How do you calculate the height of a large tree?

HEIGHT REVIEW
•  Height

•  In this class, we set the height of an empty tree to
be equal to -1

•  This makes the height of a single node 0
•  How do you calculate the height of a large tree?

•  Height = 1 + max(height(left),height(right))

IMPLEMENTATIONS
•  BST Analysis:

•  Find():

IMPLEMENTATIONS
•  BST Analysis:

•  Find():
•  Worst-case:

IMPLEMENTATIONS
•  BST Analysis:

•  Find():
•  Worst-case: O(n)

IMPLEMENTATIONS
•  BST Analysis:

•  Find():
•  Worst-case: O(n)
•  What is this case?

IMPLEMENTATIONS
•  BST Analysis:

•  Find():
•  Worst-case: O(n)
•  What is this case? When the tree is linear

IMPLEMENTATIONS
•  BST Analysis:

•  Find():
•  Worst-case: O(n)
•  What is this case? When the tree is linear
•  Best-case: O(1)

IMPLEMENTATIONS
•  BST Analysis:

•  Find():
•  Worst-case: O(n)
•  What is this case? When the tree is linear
•  Best-case: O(1) When the item is the root

IMPLEMENTATIONS
•  BST Analysis:

•  Find():
•  Worst-case: O(n)
•  What is this case? When the tree is linear
•  Best-case: O(1) When the item is the root
•  Generally, however: O(log n) when the tree is

balanced

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  What are some strategies for deleting?

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  What are some strategies for deleting?
•  Are there any cases where deleting is easy?

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  What are some strategies for deleting?
•  Are there any cases where deleting is easy?
•  Case 0: The element is not in the data structure

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  What are some strategies for deleting?
•  Are there any cases where deleting is easy?
•  Case 0: The element is not in the data structure

•  Don’t change the data, possibly throw an exception

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  What are some strategies for deleting?
•  Are there any cases where deleting is easy?
•  Case 0: The element is not in the data structure

•  Don’t change the data, possibly throw an exception
•  Case 1: The key is a leaf in the tree

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  What are some strategies for deleting?
•  Are there any cases where deleting is easy?
•  Case 0: The element is not in the data structure

•  Don’t change the data, possibly throw an exception
•  Case 1: The key is a leaf in the tree

•  Remove the pointer to that node

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  What are some strategies for deleting?
•  Are there any cases where deleting is easy?
•  Case 0: The element is not in the data structure

•  Don’t change the data, possibly throw an exception
•  Case 1: The key is a leaf in the tree

•  Remove the pointer to that node
•  Case 2: The node has one child

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  What are some strategies for deleting?
•  Are there any cases where deleting is easy?
•  Case 0: The element is not in the data structure

•  Don’t change the data, possibly throw an exception
•  Case 1: The key is a leaf in the tree

•  Remove the pointer to that node
•  Case 2: The node has one child

•  Replace that node with its child

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  What are some strategies for deleting?
•  Are there any cases where deleting is easy?
•  Case 0: The element is not in the data structure

•  Don’t change the data, possibly throw an exception
•  Case 1: The key is a leaf in the tree

•  Remove the pointer to that node
•  Case 2: The node has one child

•  Replace that node with its child
•  Case 3: The node has two children

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  What are some strategies for deleting?
•  Are there any cases where deleting is easy?
•  Case 0: The element is not in the data structure

•  Don’t change the data, possibly throw an exception
•  Case 1: The key is a leaf in the tree

•  Remove the pointer to that node
•  Case 2: The node has one child

•  Replace that node with its child
•  Case 3: The node has two children

•  What are some possible strategies?

IMPLEMENTATIONS
•  Deleting nodes with 2 children

•  How do we delete 12?

8	

4	

2	

1	
 3	

6	

5	
 7	

12	

10	

9	
 11	

14	

13	
 15	

IMPLEMENTATIONS
•  Deleting nodes with 2 children

•  How do we delete 12?
•  Can we replace 12 with one of it’s children?

8	

4	

2	

1	
 3	

6	

5	
 7	

12	

10	

9	
 11	

14	

13	
 15	

IMPLEMENTATIONS
•  Deleting nodes with 2 children

•  How do we delete 12?
•  Can we replace 12 with one of it’s children?
•  Need to find candidate to replace 12

8	

4	

2	

1	
 3	

6	

5	
 7	

12	

10	

9	
 11	

14	

13	
 15	

IMPLEMENTATIONS
•  Deleting nodes with 2 children

•  If a node has 2 children, then we can “delete” it by over
writing the node with a different <key, value> pair

IMPLEMENTATIONS
•  Deleting nodes with 2 children

•  If a node has 2 children, then we can “delete” it by over
writing the node with a different <key, value> pair

•  In order to avoid changing the shape and doing too much
work, it must be either the predecessor (the element just
before it in sorted order) or the successor (the element just
after it in sorted order)

IMPLEMENTATIONS
•  Deleting nodes with 2 children

•  What are the predecessor and successor of 12?

8	

4	

2	

1	
 3	

6	

5	
 7	

12	

10	

9	
 11	

14	

13	
 15	

IMPLEMENTATIONS
•  Deleting nodes with 2 children

•  What are the predecessor and successor of 12?
•  What is unique about these elements?

8	

4	

2	

1	
 3	

6	

5	
 7	

12	

10	

9	
 11	

14	

13	
 15	

IMPLEMENTATIONS
•  Deleting nodes with 2 children

•  What are the predecessor and successor of 12?
•  What is unique about these elements?

•  They have at most one child! Easy deletion

8	

4	

2	

1	
 3	

6	

5	
 7	

12	

10	

9	
 11	

14	

13	
 15	

IMPLEMENTATIONS
•  Deleting nodes with 2 children

•  What are the predecessor and successor of 12?
•  What is unique about these elements?

•  They have at most one child! Easy deletion

8	

4	

2	

1	
 3	

6	

5	
 7	

12	

10	

9	
 11	

14	

13	
 15	

IMPLEMENTATIONS
•  Deleting nodes with 2 children

•  What are the predecessor and successor of 12?
•  What is unique about these elements?

•  They have at most one child! Easy deletion

8	

4	

2	

1	
 3	

6	

5	
 7	

13	

10	

9	
 11	

14	

15	

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  Worst case(): O(n)

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  Worst case(): O(n), finding the predecessor/successor

takes time

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  Worst case(): O(n), finding the predecessor/successor

takes time. What is this case?

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  Worst case(): O(n), finding the predecessor/successor

takes time. What is this case?
•  Best case(): O(1) if we’re deleting the root from a

degenerate tree

IMPLEMENTATIONS
•  BST Analysis:

•  Delete():
•  Worst case(): O(n), finding the predecessor/successor

takes time. What is this case?
•  Best case(): O(1) if we’re deleting the root from a

degenerate tree
•  “Degenerate” trees are those that are very

unbalanced.

ANALYSIS
•  Height

ANALYSIS
•  Height

•  Many of our worst cases are when trees are poorly balanced

ANALYSIS
•  Height

•  Many of our worst cases are when trees are poorly balanced
•  Can we enforce this balance?

ANALYSIS
•  Height

•  Many of our worst cases are when trees are poorly balanced
•  Can we enforce this balance?
•  What are some possible balance conditions?

ANALYSIS
•  Height

•  Many of our worst cases are when trees are poorly balanced
•  Can we enforce this balance?
•  What are some possible balance conditions?

•  Number of elements on the left = number on right?

ANALYSIS
•  Height

•  Many of our worst cases are when trees are poorly balanced
•  Can we enforce this balance?
•  What are some possible balance conditions?

•  Number of elements on the left = number on right?
•  What we really care about though is the height of the tree

ANALYSIS
•  Height

•  Many of our worst cases are when trees are poorly balanced
•  Can we enforce this balance?
•  What are some possible balance conditions?

•  Number of elements on the left = number on right?
•  What we really care about though is the height of the tree
•  Height of the left = height on the right?

ANALYSIS
•  This doesn’t help much

ANALYSIS
•  This doesn’t help much

•  Need the definition to be recursive
•  Let height(left) = height(right) for all nodes

ANALYSIS
•  Now what’s wrong?

ANALYSIS
•  Now what’s wrong?

•  Only perfect trees (with 2k children) can exist

ANALYSIS
•  For each node in the tree, the height of its left

and right subtrees can differ by at most one

ANALYSIS
•  For each node in the tree, the height of its left

and right subtrees can differ by at most one
•  |(height(left) – height(right)| < 1

ANALYSIS
•  For each node in the tree, the height of its left

and right subtrees can differ by at most one
•  |(height(left) – height(right)| < 1
•  This is the AVL property, and we can use it to

create self balancing trees

