ASSORTED MINUTIAE

• Checkpoint 1 should be in
• Late submissions still to canvas
• Official grade Monday
• Half of points lost can be reearned
REVIEW

• Counting operations isn’t the best for determining performance
 • Need an understanding of how runtime changes relative to input size
 • Asymptotic analysis
 • bigO notation
BIG-O NOTATION

- Informally: bigO notation denotes an upper bound for an algorithms asymptotic runtime
- For example, if an algorithm A is $O(\log n)$, that means some logarithmic function upper bounds A.
Formally, a function $f(n)$ is $O(g(n))$ if there exists a c and n_0 such that:

For all $n \geq n_0$, $f(n) < c \times g(n)$

To prove a function is $O(g(n))$, simply find the c and n_0
EXAMPLES

• $4 + 3n = O(n)$?
• $4 + 3n = O(1)$?
EXAMPLES

- $4 + 3n = O(n)$?
- $4 + 3n = O(1)$?
- $4 + 3n = O(n^2)$
- $n + 2 \log n = O(\log n)$?
EXAMPLES

• $4 + 3n = O(n)$?
• $4 + 3n = O(1)$?
• $4 + 3n = O(n^2)$
• $n + 2 \log n = O(\log n)$?
• $\log n = O(n + 2 \log n)$?
REVIEW

• Practice
 • Inserting into a sorted linked list
REVIEW

• Practice
 • Inserting into a sorted linked list
 • What is the approach?
REVIEW

start at the front of the list
REVIEW

start at the front of the list
while the pointer is less than the insert item:
REVIEW

start at the front of the list
while the pointer is less than the insert item:
 move to the next node
REVIEW

start at the front of the list

while the pointer is less than the insert item:
 move to the next node

insert the element, relinking the list around it
start at the front of the list
while the pointer is less than the insert item:
 move to the next node
insert the element, relinking the list around it

• What is the runtime here?
REVIEW

start at the front of the list
while the pointer is less than the insert item:
 move to the next node
insert the element, relinking the list around it

• What is the runtime here?
 • Important considerations—best-case or worst-case?
REVIEW

- Worst-case
REVIEW

- Worst-case
 - What is this case?
REVIEW

• **Worst-case**

 • What is this case?

 • Inserting the new largest element (i.e. at the end of the list)
REVIEW

• Worst-case
 • What is this case?
 • Inserting the new largest element (i.e. at the end of the list)
 • What is the runtime?
 • $O(n)$
REVIEW

• Worst-case
 • What is this case?
 • Inserting the new largest element (i.e. at the end of the list)
 • What is the runtime?
 • $O(n)$ Why?
REVIEW

• Worst-case
 • What is this case?
 • Inserting the new largest element (i.e. at the end of the list)
 • What is the runtime?
 • $O(n)$ Why?
 • The loop must iterate through all n elements to find the correct place
REVIEW

• Best-case
• Best-case
 • What is this case?
REVIEW

• Best-case
 • What is this case?
 • Smallest element, inserting at the beginning
REVIEW

• Best-case
 • What is this case?
 • Smallest element, inserting at the beginning
 • What is the runtime?
REVIEW

• Best-case
 • What is this case?
 • Smallest element, inserting at the beginning
 • What is the runtime?
 • O(1)
REVIEW

• Best-case
 • What is this case?
 • Smallest element, inserting at the beginning
 • What is the runtime?
 • $O(1)$ – we can add to the front of a linked list in constant time
ANALYSIS

• Loops and iterations can be analyzed
ANALYSIS

• Loops and iterations can be analyzed
• How do we approach recursive functions?
ANALYSIS

• Loops and iterations can be analyzed
• How do we approach recursive functions?
 • Let’s consider a recursive algorithm that reverses a list
reverse(Node L):
 if(L==null) return L;
 else if(L.next == null) return L;
 else
 Node front = L
 Node rest = L.next
 L.next = null
 Node restRev = reverse(rest)
 appendToEnd(front,restRev)
reverse(Node L):
 if (L == null) return L;
 else if (L.next == null) return L;
 else
 Node front = L
 Node rest = L.next
 L.next = null
 Node restRev = reverse(rest)
 appendToEnd(front, restRev)

• We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive
reverse(Node L):

if(L==null) return L; \ non-recursive
else if(L.next == null) return L;
else
 Node front = L
 Node rest = L.next
 L.next = null
 Node restRev = reverse(rest)
 appendToEnd(front,restRev)

• We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive
reverse(Node L):

if(L==null) return L;
else if(L.next == null) return L;
else

Node front = L
Node rest = L.next
L.next = null
Node restRev = reverse(rest)
appendToEnd(front,restRev)

• We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive
reverse(Node L):

if(L==null) return L; non-recursive
else if(L.next == null) return L; non-recursive
else

 Node front = L non-recursive
 Node rest = L.next
 L.next = null
 Node restRev = reverse(rest)
 appendToEnd(front,restRev)

• We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive
ANALYSIS

reverse(Node L):

if(L==null) return L; non-recursive
else if(L.next == null) return L; non-recursive
else

Node front = L non-recursive
Node rest = L.next non-recursive
L.next = null
Node restRev = reverse(rest)
appendToEnd(front,restRev)

• We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive
ANALYSIS

reverse(Node L):

if(L==null) return L;
else if(L.next == null) return L;
else

Node front = L
Node rest = L.next
L.next = null
Node restRev = reverse(rest)
appendToEnd(front,restRev)

• We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive
ANALYSIS

reverse(Node L):

if(L==null) return L; non-recursive
else if(L.next == null) return L; non-recursive
else
 Node front = L non-recursive
 Node rest = L.next non-recursive
 L.next = null non-recursive
 Node restRev = reverse(rest) recursive
 appendToEnd(front,restRev)

• We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive
reverse(Node L):

if(L==null) return L;

else if(L.next == null) return L;

else

Node front = L
Node rest = L.next
L.next = null
Node restRev = reverse(rest)
appendToEnd(front,restRev)

• We know how to analyze everything but the recursive step, so break the algorithm into its two parts, recursive and non-recursive
reverse(Node L):
 if(L==null) return L; non-recursive
 else if(L.next == null) return L; non-recursive
 else
 Node front = L non-recursive
 Node rest = L.next non-recursive
 L.next = null non-recursive
 Node restRev = reverse(rest) recursive
 appendToEnd(front,restRev) non-recursive

• What is the runtime of the non-recursive work?
reverse(Node L):
 if(L==null) return L;
 else if(L.next == null) return L;
 else
 Node front = L
 Node rest = L.next
 L.next = null
 Node restRev = reverse(rest) recursive
 appendToEnd(front,restRev)

• What is the runtime of the non-recursive work?
 • Depends on the case!
reverse(Node L):

if(L==null) return L; non-recursive

else if(L.next == null) return L; non-recursive

else

 Node front = L non-recursive
 Node rest = L.next non-recursive
 L.next = null non-recursive
 Node restRev = reverse(rest) recursive
 appendToEnd(front,restRev) non-recursive

• What is the runtime of the non-recursive work?
 • Depends on the case! There are two base cases, n = 0 and n = 1, but let’s look at the n > 1 case first
reverse(Node L):

if(L==null) return L; \hspace{1cm} \text{non-recursive}

else if(L.next == null) return L; \hspace{1cm} \text{non-recursive}

else

\hspace{1cm} \text{Node front} = L \hspace{1cm} \text{non-recursive}

\hspace{1cm} \text{Node rest} = L.next \hspace{1cm} \text{non-recursive}

\hspace{1cm} L.next = null \hspace{1cm} \text{non-recursive}

\hspace{1cm} Node restRev = reverse(rest) \hspace{1cm} \text{recursive}

\hspace{1cm} appendToEnd(front,restRev) \hspace{1cm} \text{non-recursive}

• What is the runtime of the non-recursive work?

 • Depends on the case! There are two base cases, \(n = 0 \) and \(n = 1 \), but let’s look at the \(n > 1 \) case first

 • Suppose that appendToEnd takes \(O(n) \) time
reverse(Node L):

if(L==null) return L; \textit{non-recursive}
else if(L.next == null) return L; \textit{non-recursive}
else

Node front = L \textit{non-recursive}
Node rest = L.next \textit{non-recursive}
L.next = null \textit{non-recursive}
Node restRev = reverse(rest) \textit{recursive}
appendToEnd(front,restRev) \textit{non-recursive}

\begin{itemize}
 \item \textbf{What is the runtime of the non-recursive work?}
 \item Let’s look at each piece
\end{itemize}
reverse(Node L):

if(L==null) return L;
else if(L.next == null) return L;
else

 Node front = L
 Node rest = L.next
 L.next = null
 Node restRev = reverse(rest)
 appendToEnd(front,restRev)

• What is the runtime of the non-recursive work?
 • Let’s look at each piece
reverse(Node L):

if(L==null) return L;
else if(L.next == null) return L;
else
 Node front = L
 Node rest = L.next
 L.next = null
 Node restRev = reverse(rest)
 appendToEnd(front,restRev)

• What is the runtime of the non-recursive work?
 • Let’s look at each piece
reverse(Node L):
 if (L==null) return L;
 else if (L.next == null) return L;
 else
 Node front = L
 Node rest = L.next
 L.next = null
 Node restRev = reverse(rest)
 appendToEnd(front, restRev)

• What is the runtime of the non-recursive work?
 • Let’s look at each piece
reverse(Node L):
 if(L==null) return L;
 else if(L.next == null) return L;
 else
 Node front = L
 Node rest = L.next
 L.next = null
 Node restRev = reverse(rest)
 appendToEnd(front,restRev)

• What is the runtime of the non-recursive work?
 • Let’s look at each piece
reverse(Node L):

 if(L==null) return L; non-recursive O(1)
 else if(L.next == null) return L; non-recursive O(1)
 else
 Node front = L non-recursive O(1)
 Node rest = L.next non-recursive O(1)
 L.next = null non-recursive O(1)
 Node restRev = reverse(rest) recursive
 appendToEnd(front,restRev) non-recursive O(n)

• What is the runtime of the non-recursive work?
 • Let’s look at each piece
reverse(Node L):

if(L==null) return L; non-recursive 0(1)
else if(L.next == null) return L; non-recursive 0(1)
else

 Node front = L non-recursive 0(1)
 Node rest = L.next non-recursive 0(1)
 L.next = null non-recursive 0(1)
 Node restRev = reverse(rest) recursive
 appendToEnd(front,restRev) non-recursive 0(n)

• What is the runtime of the non-recursive work?
 • Here, n is the size of the list starting at L
reverse(Node L):
 if(L==null) return L; \text{non-recursive \textit{O}(1)}
 else if(L.next == null) return L; \text{non-recursive \textit{O}(1)}
 else
 Node front = L \text{non-recursive \textit{O}(1)}
 Node rest = L.next \text{non-recursive \textit{O}(1)}
 L.next = null \text{non-recursive \textit{O}(1)}
 Node restRev = reverse(rest) \text{recursive}
 appendToEnd(front,restRev) \text{non-recursive \textit{O}(n)}

- What is the runtime of the non-recursive work?
 - This is \textit{O}(n) total, which means we can upper bound the non-recursive work by $c_0 + c_1 \cdot n$
ANALYSIS

reverse(Node L):

 if(L==null) return L; non-recursive O(1)
 else if(L.next == null) return L; non-recursive O(1)
 else
 Node front = L non-recursive O(1)
 Node rest = L.next non-recursive O(1)
 L.next = null non-recursive O(1)
 Node restRev = reverse(rest) recursive
 appendToEnd(front,restRev) non-recursive O(n)

• What is the total runtime then?
reverse(Node L):

- if(L==null) return L;
 non-recursive O(1)
- else if(L.next == null) return L;
 non-recursive O(1)
- else

 Node front = L
 non-recursive O(1)
 Node rest = L.next
 non-recursive O(1)
 L.next = null
 non-recursive O(1)
 Node restRev = reverse(rest)
 recursive
 appendToEnd(front,restRev)
 non-recursive O(n)

- What is the total runtime then?
 - Let the functions runtime be denoted as T(n), where n is the number of elements
ANALYSIS

reverse(Node L):

if(L==null) return L;
else if(L.next == null) return L;
else

 Node front = L
 Node rest = L.next
 L.next = null
 Node restRev = reverse(rest)
 appendToEnd(front,restRev)

non-recursive 0(1)
non-recursive 0(1)
non-recursive 0(1)
recursive
non-recursive 0(n)

What is the total runtime then?

T(n) = c_0 + c_1 * n + recursive work
reverse(Node L):

if(L==null) return L;
else if(L.next == null) return L;
else

 Node front = L
 Node rest = L.next
 L.next = null
 Node restRev = reverse(rest)
 appendToEnd(front,restRev)

• What is the total runtime then?

 • T(n) = c_0 + c_1*n + recursive work
 • What is the recursive work?
reverse(Node L):

if(L==null) return L; \hspace{1cm} \text{non-recursive } O(1)

else if(L.next == null) return L; \hspace{1cm} \text{non-recursive } O(1)

else

 Node front = L \hspace{1cm} \text{non-recursive } O(1)
 Node rest = L.next \hspace{1cm} \text{non-recursive } O(1)
 L.next = null \hspace{1cm} \text{non-recursive } O(1)
 Node restRev = reverse(rest) \hspace{1cm} \text{recursive}
 appendToEnd(front,restRev) \hspace{1cm} \text{non-recursive } O(n)

• What is the total runtime then?

 • \(T(n) = c_0 + c_1*n + \text{recursive work} \)
 • What is the recursive work? rest is size \(n-1 \)
reverse(Node L):

if(L==null) return L; \hspace{1cm} \text{non-recursive } O(1)
else if(L.next == null) return L; \hspace{1cm} \text{non-recursive } O(1)
else

Node front = L \hspace{1cm} \text{non-recursive } O(1)
Node rest = L.next \hspace{1cm} \text{non-recursive } O(1)
L.next = null \hspace{1cm} \text{non-recursive } O(1)
Node restRev = reverse(rest) \hspace{1cm} \text{recursive}
appendToEnd(front,restRev) \hspace{1cm} \text{non-recursive } O(n)

• What is the total runtime then?
 • $T(n) = c_0 + c_1*n + T(n-1)$
ANALYSIS

reverse(Node L):

if(L==null) return L; non-recursive 0(1)

else if(L.next == null) return L; non-recursive 0(1)

else

 Node front = L non-recursive 0(1)
 Node rest = L.next non-recursive 0(1)
 L.next = null non-recursive 0(1)
 Node restRev = reverse(rest) recursive
 addToEnd(front,restRev) non-recursive O(n)

• What is the total runtime then?
 • \(T(n) = c_0 + c_1 \cdot n + T(n-1) \)
 • This is the recurrence! It’s a function that uses itself in its definition
ANALYSIS

reverse(Node L):

if (L == null) return L;
else if (L.next == null) return L;
else

 Node front = L
 Node rest = L.next
 L.next = null
 Node restRev = reverse(rest)
 appendToEnd(front, restRev)

non-recursive O(1)
non-recursive O(1)
non-recursive O(1)
recursive
non-recursive O(n)

• **What is the total runtime then?**

 • \(T(n) = c_0 + c_1 \cdot n + T(n-1) \)
 • This is the recurrence! It’s a function that uses itself in its definition
 • Fibonacci numbers are an example
reverse(Node L):
 if(L==null) return L; non-recursive 0(1)
 else if(L.next == null) return L; non-recursive 0(1)
 else
 Node front = L non-recursive 0(1)
 Node rest = L.next non-recursive 0(1)
 L.next = null non-recursive 0(1)
 Node restRev = reverse(rest) recursive
 appendToEnd(front,restRev) non-recursive 0(n)

• **What is the total runtime then?**
 • $T(n) = c_0 + c_1*n + T(n-1)$
 • This is the recurrence! It’s a function that uses itself in its definition
 • Fibonnacci numbers are an example. **What’s missing?**
ANALYSIS

• Recurrence relation for reverse
 • $T(n) = d_0$ when $n = 0$
 • $T(n) = d_1$ when $n = 1$
 • $T(n) = c_0 + c_1 \cdot n + T(n-1)$ when $n > 1$
ANALYSIS

• Recurrence relation for reverse
 • $T(n) = d_0$ when $n = 0$
 • $T(n) = d_1$ when $n = 1$
 • $T(n) = c_0 + c_1*n + T(n-1)$ when $n > 1$

• How do we solve this recurrence?
ANALYSIS

• Recurrence relation for reverse
 • \(T(n) = d_0 \) when \(n = 0 \)
 • \(T(n) = d_1 \) when \(n = 1 \)
 • \(T(n) = c_0 + c_1 \cdot n + T(n-1) \) when \(n > 1 \)

• How do we solve this recurrence?
 • We can unroll it and see if a pattern emerges
 • \(T(n) = c_0 + c_1 \cdot n + T(n-1) \)
ANALYSIS

• Recurrence relation for reverse
 • $T(n) = d_0$ when $n = 0$
 • $T(n) = d_1$ when $n = 1$
 • $T(n) = c_0 + c_1 \cdot n + T(n-1)$ when $n > 1$

• How do we solve this recurrence?
 • We can unroll it and see if a pattern emerges
 • $T(n) = c_0 + c_1 \cdot n + T(n-1)$
 • $T(n) = c_0 + c_1 \cdot n + c_0 + c_1 \cdot (n-1) + T(n-2)$
ANALYSIS

• Recurrence relation for reverse
 • \(T(n) = d_0 \) when \(n = 0 \)
 • \(T(n) = d_1 \) when \(n = 1 \)
 • \(T(n) = c_0 + c_1 \times n + T(n-1) \) when \(n > 1 \)

• How do we solve this recurrence?
 • We can unroll it and see if a pattern emerges
 • \(T(n) = c_0 + c_1 \times n + T(n-1) \)
 • \(T(n) = c_0 + c_1 \times n + c_0 + c_1 \times (n-1) + T(n-2) \)
 • \(T(n) = c_0 + c_1 \times n + c_0 + c_1 \times (n-1) + c_0 + c_1 \times (n-2) + T(n-3) \)
 • \(T(n) = 3c_0 + c_1 \times (n+(n-1)+(n-2)) + T(n-3) \)
 • What are the patterns?
ANALYSIS

• Recurrence relation for reverse
 • \(T(n) = d_0 \) when \(n = 0 \)
 • \(T(n) = d_1 \) when \(n = 1 \)
 • \(T(n) = c_0 + c_1 \cdot n + T(n-1) \) when \(n > 1 \)

• What are the patterns?
 • Each time we add 1 \(c_0 \)
 • Each time we add ‘n’ \(c_1 \)
ANALYSIS

• Recurrence relation for reverse
 • $T(n) = d_0$ when $n = 0$
 • $T(n) = d_1$ when $n = 1$
 • $T(n) = c_0 + c_1 \cdot n + T(n-1)$ when $n > 1$

• What are the patterns?
 • Each time we add 1 c_0
 • Each time we add ‘n’ c_1
 • But n is getting reduced by one every time
ANALYSIS

• Recurrence relation for reverse
 • $T(n) = d_0$ when $n = 0$
 • $T(n) = d_1$ when $n = 1$
 • $T(n) = c_0 + c_1 \cdot n + T(n-1)$ when $n > 1$

• What are the patterns?
 • Each time we add 1 c_0
 • Each time we add ‘n’ c_1
 • But n is getting reduced by one every time
 • How many times does this call itself?
ANALYSIS

• Recurrence relation for reverse
 • $T(n) = d_0$ when $n = 0$
 • $T(n) = d_1$ when $n = 1$
 • $T(n) = c_0 + c_1 \cdot n + T(n-1)$ when $n > 1$

• What are the patterns?
 • Each time we add 1 c_0
 • Each time we add ‘n’ c_1
 • But n is getting reduced by one every time
 • How many times does this call itself?
 • $n-1$, because 1 is a base case
ANALYSIS

• Recurrence relation for reverse
 • $T(n) = d_0$ when $n = 0$
 • $T(n) = d_1$ when $n = 1$
 • $T(n) = c_0 + c_1 \cdot n + T(n-1)$ when $n > 1$

• What are the patterns?
 • Each time we add 1 c_0
 • Each time we add ‘n’ c_1
 • But n is getting reduced by one every time
 • How many times does this call itself?
 • $n-1$, because 1 is a base case
 • What then is the closed form of this recurrence?
ANALYSIS

• Recurrence relation for reverse
 • $T(n) = d_0$ when $n = 0$
 • $T(n) = d_1$ when $n = 1$
 • $T(n) = c_0 + c_1 \cdot n + T(n-1)$ when $n > 1$

• Closed form?
ANALYSIS

• Recurrence relation for reverse
 • $T(n) = d_0$ when $n = 0$
 • $T(n) = d_1$ when $n = 1$
 • $T(n) = c_0 + c_1 \cdot n + T(n-1)$ when $n > 1$

• Closed form?
 • $T(n) =$
ANALYSIS

• Recurrence relation for reverse
 • $T(n) = d_0$ when $n = 0$
 • $T(n) = d_1$ when $n = 1$
 • $T(n) = c_0 + c_1 \cdot n + T(n-1)$ when $n > 1$

• Closed form?
 • $T(n) = (n-1) \cdot c_0$ +
ANALYSIS

• Recurrence relation for reverse
 • $T(n) = d_0$ when $n = 0$
 • $T(n) = d_1$ when $n = 1$
 • $T(n) = c_0 + c_1 \cdot n + T(n-1)$ when $n > 1$

• Closed form?
 • $T(n) = (n-1) \cdot c_0 + \sum i \cdot c_1$
ANALYSIS

• Recurrence relation for reverse
 • $T(n) = d_0$ when $n = 0$
 • $T(n) = d_1$ when $n = 1$
 • $T(n) = c_0 + c_1 \cdot n + T(n-1)$ when $n > 1$

• Closed form?
 • $T(n) = (n-1) \cdot c_0 + (n-1) \cdot (n)/2 \cdot c_1$
ANALYSIS

• Recurrence relation for reverse
 • \(T(n) = d_0 \) when \(n = 0 \)
 • \(T(n) = d_1 \) when \(n = 1 \)
 • \(T(n) = c_0 + c_1 \cdot n + T(n-1) \) when \(n > 1 \)

• Closed form?
 • \(T(n) = (n-1) \cdot c_0 + (n-1) \cdot n / 2 \cdot c_1 \)
 • Is this all?
ANALYSIS

- **Recurrence relation for reverse**
 - $T(n) = d_0$ when $n = 0$
 - $T(n) = d_1$ when $n = 1$
 - $T(n) = c_0 + c_1 \cdot n + T(n-1)$ when $n > 1$
- **Closed form?**
 - $T(n) = (n-1) \cdot c_0 + (n-1) \cdot n/2 \cdot c_1 + d_1$
 - Is this all?
ANALYSIS

- Recurrence relation for reverse
 - \(T(n) = d_0 \) when \(n = 0 \)
 - \(T(n) = d_1 \) when \(n = 1 \)
 - \(T(n) = c_0 + c_1 * n + T(n-1) \) when \(n > 1 \)
- Closed form?
 - \(T(n) = (n-1) * c_0 + (n-1) * (n)/2 * c_1 + d_1 \)
 - What is the upper bound of this function?
ANALYSIS

• Recurrence relation for reverse
 - \(T(n) = d_0 \) when \(n = 0 \)
 - \(T(n) = d_1 \) when \(n = 1 \)
 - \(T(n) = c_0 + c_1 \cdot n + T(n-1) \) when \(n > 1 \)

• Closed form?
 - \(T(n) = (n-1) \cdot c_0 + (n-1) \cdot \frac{n}{2} \cdot c_1 + d_1 \)
 - What is the upper bound of this function?
 - \(O(n^2) \)
ANALYSIS

• Recurrence relation for reverse
 • $T(n) = d_0$ when $n = 0$
 • $T(n) = d_1$ when $n = 1$
 • $T(n) = c_0 + c_1 * n + T(n-1)$ when $n > 1$

• Closed form?
 • $T(n) = (n-1) * c_0 + (n-1) * (n/2) * c_1 + d_1$

• What is the upper bound of this function?
 • $O(n^2)$ the $O(n)$ appendToEnd is what costs us
ANALYSIS

- While this process is important, we can save some steps if all we care about is the upper bound

 - bigO notation eliminates the need for constants
 - Lots of our messing around with c_0 and c_1 doesn’t come through to the solution
 - Rather than saying $T(n) = c_0 + n*c_1 + T(n-1)$, we can observe that $c_0 + n*c_1$ is in $O(n)$
 - Simplify to $T(n) = O(n) + T(n-1)$
ANALYSIS

- Let’s consider binary search again
ANALYSIS

• Let’s consider binary search again
 • We mentioned last week that it was $O(\log n)$
ANALYSIS

• Let’s consider binary search again
 • We mentioned last week that it was $O(\log n)$
 • Can you use recurrence relations to show this for a recursive implementation?
ANALYSIS

- Let’s consider binary search again
 - We mentioned last week that it was $O(\log n)$
 - Can you use recurrence relations to show this for a recursive implementation?

```java
BinarySearch(Integer[] array, Integer value, int lo, int hi)
    if(hi < lo) return null;
    mid = hi/2 + lo/2
    if(A[mid] > value)
        return BinarySearch(array,value,mid,hi)
    else if(A[mid] < value)
        return BinarySearch(array,value,lo,mid)
    else return mid
```
ANALYSIS

BinarySearch(Integer[] array, Integer value, int lo, int hi)
 if(hi < lo) return null;
 mid = hi/2 + lo/2
 if(A[mid] > value)
 return BinarySearch(array,value,mid,hi)
 else if(A[mid] < value)
 return BinarySearch(array,value,lo,mid)
 else return mid
ANALYSIS

BinarySearch(Integer[] array, Integer value, int lo, int hi)

 if(hi < lo) return null;
 mid = hi/2 + lo/2
 if(A[mid] > value)
 return BinarySearch(array,value,mid,hi)
 else if(A[mid] < value)
 return BinarySearch(array,value,lo,mid)
 else return mid

• What steps do we need to take?
ANALYSIS

BinarySearch(Integer[] array, Integer value, int lo, int hi)

if(hi < lo) return null;

mid = hi/2 + lo/2

if(A[mid] > value)
 return BinarySearch(array,value,mid,hi)
else if(A[mid] < value)
 return BinarySearch(array,value,lo,mid)
else return mid

• What steps do we need to take?
 • Break down into recursive and non-recursive
ANALYSIS

BinarySearch(Integer[] array, Integer value, int lo, int hi)

if(hi < lo) return null;

mid = hi/2 + lo/2

if(A[mid] > value)
 return BinarySearch(array,value,mid,hi)
else if(A[mid] < value)
 return BinarySearch(array,value,lo,mid)
else return mid

• **What steps do we need to take?**
 • Break down into recursive and non-recursive
 • Calculate the non-recursive runtimes
ANALYSIS

BinarySearch(Integer[] array, Integer value, int lo, int hi)
 if(hi < lo) return null;
 mid = hi/2 + lo/2
 if(A[mid] > value)
 return BinarySearch(array,value,mid,hi)
 else if(A[mid] < value)
 return BinarySearch(array,value,lo,mid)
 else return mid

• What steps do we need to take?
 • Break down into recursive and non-recursive
 • Calculate the non-recursive runtimes
 • Produce the recurrence
ANALYSIS

BinarySearch(Integer[] array, Integer value, int lo, int hi)
 if(hi < lo) return null;
 mid = hi/2 + lo/2
 if(A[mid] > value)
 return BinarySearch(array,value,mid,hi)
 else if(A[mid] < value)
 return BinarySearch(array,value,lo,mid)
 else return mid

• What steps do we need to take?
 • Break down into recursive and non-recursive
 • Calculate the non-recursive runtimes
 • Produce the recurrence
 • Roll out the recurrence to observe a pattern
ANALYSIS

BinarySearch(Integer[] array, Integer value, int lo, int hi)
 if(hi < lo) return null;
 mid = hi/2 + lo/2
 if(A[mid] > value)
 return BinarySearch(array,value,mid,hi)
 else if(A[mid] < value)
 return BinarySearch(array,value,lo,mid)
 else return mid

• What steps do we need to take?
 • Break down into recursive and non-recursive
 • Calculate the non-recursive runtimes
 • Produce the recurrence
 • Roll out the recurrence to observe a pattern
 • Upper bound the closed form
ANALYSIS

• What is the recurrence we produced?
ANALYSIS

• What is the recurrence we produced?
 • $T(n) = d_0$ for $n = 0$
ANALYSIS

• What is the recurrence we produced?
 • $T(n) = d_0$ for $n = 0$
 • $T(n) = c_0 + T(n/2)$ for $n > 0$
ANALYSIS

• What is the recurrence we produced?
 • $T(n) = d_0$ for $n = 0$
 • $T(n) = c_0 + T(n/2)$ for $n > 0$

• Important to note
ANALYSIS

• What is the recurrence we produced?
 • $T(n) = d_0$ for $n = 0$
 • $T(n) = c_0 + T(n/2)$ for $n > 0$

• Important to note
 • How many times can we divide n by 2 until we get 1?
ANALYSIS

• What is the recurrence we produced?
 • $T(n) = d_0$ for $n = 0$
 • $T(n) = c_0 + T(n/2)$ for $n > 0$

• Important to note
 • How many times can we divide n by 2 until we get 1?
 • $\log_2 n$
ANALYSIS

• Let’s consider a recursive function which counts the number of instances of an element in an array.

```java
int countNumber(String[] array, String toFind, int lo, int hi){
    if(lo == hi) return array[lo]==toFind?0:1
    else
        int mid = (lo+hi)/2
        return countNumber(array,toFind,lo,mid) +
               countNumber(array,toFind,mid,hi)
}
```
• Let’s consider a recursive function which counts the number of instances of an element in an array.

```java
int countNumber(String[] array, String toFind, int lo, int hi){
    if(lo == hi) return array[lo]==toFind?0:1
    else
        int mid = (lo+hi)/2
        return countNumber(array,toFind,lo,mid) +
               countNumber(array,toFind,mid,hi)
}
```

What is the recurrence here?
Let’s consider a recursive function which counts the number of instances of an element in an array.

```java
int countNumber(String[] array, String toFind, int lo, int hi)
{
    if(lo == hi) return array[lo]==toFind?0:1
    else
    {
        int mid = (lo+hi)/2
        return countNumber(array,toFind,lo,mid) +
               countNumber(array,toFind,mid,hi)
    }
}
```

What is the recurrence here? $T(n) = O(1) + 2T(n/2)$
ANALYSIS

• Graphically count the operations using what is called a recurrence tree
ANALYSIS

• Graphically count the operations using what is called a recurrence tree

• Each “node” is the work done, and each of the children are their own nodes

• Calculate the work going throughout.