CSE 373

OCTOBER 4TH – ALGORITHM ANALYSIS
TODAY’S LECTURE

• Algorithm Analysis
 • Asymptotic analysis
 • bigO notation
PROJECT 1

• Checkpoint 1 due at 11:30 pm
• Submit only the files listed in the deliverables section
• If you submit as a group, make sure all files have both team names
• Helpful if you could add a comment on your canvas submission indicating your partner
REVIEW

• Algorithm Analysis
 • Testing is for implementations
 • Analysis is for algorithms
REVIEW

• Algorithm Analysis
 • Testing is for implementations
 • Analysis is for algorithms
 • Runtime, memory and correctness
REVIEW

- Algorithm Analysis
 - Testing is for implementations
 - Analysis is for algorithms
 - Runtime, memory and correctness
 - Best case, average case, worst case
REVIEW

* Algorithm Analysis
 * Testing is for implementations
 * Analysis is for algorithms
 * Runtime, memory and correctness
 * Best case, average case, worst case
 * Over groups of inputs, not just one
ALGORITHM ANALYSIS

• Principles of analysis
ALGORITHM ANALYSIS

• Principles of analysis
 • Determining performance behavior
 • How does an algorithm react to new data or changes?
 • Independent of language or implementation
ALGORITHM ANALYSIS

• Example: find()
 • Sorted v Unsorted
 • How is insert impacted?
ALGORITHM ANALYSIS

• Example: find()
 • Sorted v Unsorted
 • How is insert impacted?
 • A sorted array gives us faster find because we can use binary search
ALGORITHM ANALYSIS

• Example: find()
 • Sorted v Unsorted
 • How is insert impacted?
 • A sorted array gives us faster find because we can use binary search
 • Can we prove that this is the case?
ALGORITHM ANALYSIS

• Example: find()
 • Sorted v Unsorted
 • How is insert impacted?
 • A sorted array gives us faster find because we can use binary search
 • Can we prove that this is the case?
BINARY SEARCH

• Analyzing binary search.
• What is the worst case?
BINARY SEARCH

• Analyzing binary search.
• What is the worst case?
 • When the item is not in the list
BINARY SEARCH

• Analyzing binary search.
• What is the worst case?
 • When the item is not in the list
• How long does this take to run?
BINARY SEARCH

- Consider the algorithm

```java
public int binarySearch(int[] data, int toFind) {
    int low = 0; int high = data.length-1;
    while(low <= high) {
        int mid = (low+high)/2;
        if(toFind > mid) low = mid+1; continue;
        else if(toFind < mid) high = mid-1; continue;
        else return mid;
    }
    return -1;
}
```
BINARY SEARCH

• What is important here?
BINARY SEARCH

• What is important here?
 • At each iteration, we eliminate half of the remaining elements.
BINARY SEARCH

• What is important here?
 • At each iteration, we eliminate half of the remaining elements.

• How long will it take to reach the end?
BINARY SEARCH

• What is important here?
 • At each iteration, we eliminate half of the remaining elements.

• How long will it take to reach the end?
BINARY SEARCH

• What is important here?
 • At each iteration, we eliminate half of the remaining elements.

• How long will it take to reach the end?
 • At first iteration, N/2 elements remain
BINAR Y SEARCH

• What is important here?
 • At each iteration, we eliminate half of the remaining elements.

• How long will it take to reach the end?
 • At first iteration, N/2 elements remain
 • At second, N/4 elements remain
BINARY SEARCH

• What is important here?
 • At each iteration, we eliminate half of the remaining elements.

• How long will it take to reach the end?
 • At first iteration, N/2 elements remain
 • At second, N/4 elements remain
 • At the kth iteration?
BINARY SEARCH

• At the kth iteration:
 • $N/2^k$ elements remain.
• When does this terminate?
BINARY SEARCH

• At the kth iteration:
 • $N/2^k$ elements remain.
• When does this terminate?
 • When $N/2^k = 1$
BINARY SEARCH

• At the kth iteration:
 • $\frac{N}{2^k}$ elements remain.

• When does this terminate?
 • When $\frac{N}{2^k} = 1$

• How many iterations then? Solve for k.
BINARY SEARCH

• Solve for \(k\).

\[\frac{N}{2^k} = 1 \]
BINARY SEARCH

• Solve for k.

$\frac{N}{2^k} = 1$

$N = 2^k$
BINARY SEARCH

• Solve for k.

\[
\frac{N}{2^k} = 1
\]

\[
N = 2^k
\]

\[
\log_2 N = k
\]
BINARY SEARCH

• Solve for k.

\[
\frac{N}{2^k} = 1
\]

\[
N = 2^k
\]

\[
\log_2 N = k
\]

• Is this exact?
BINARY SEARCH

• Solve for k.

\[\frac{N}{2^k} = 1 \]
\[N = 2^k \]
\[\log_2 N = k \]

• Is this exact?

• Where was the error introduced?
BINARY SEARCH

• Solve for \(k \).
 \[
 \frac{N}{2^k} = 1
 \]
 \[
 N = 2^k
 \]
 \[
 \log_2 N = k
 \]

• Is this exact?

• Where was the error introduced?
 • \(N \) can be things other than powers of two
BINAR Y SEARCH

• Solve for k.

$\frac{N}{2^k} = 1$

$N = 2^k$

$\log_2 N = k$

• Is this exact?

• Where was the error introduced?

 • N can be things other than powers of two
 • Ceiling and floor rounding
ANALYSIS

- If this isn’t exact, is it still correct?
ANALYSIS

• If this isn’t exact, is it still correct?
• Yes. We care about asymptotic growth.
ANALYSIS

• If this isn’t exact, is it still correct?
• Yes. We care about asymptotic growth.
 • How a the runtime of an algorithm grows with big data
ANALYSIS

• If this isn’t exact, is it still correct?
• Yes. We care about asymptotic growth.
 • How a the runtime of an algorithm grows with big data
• To incorporate this perspective, we use bigO notation
BIG-O NOTATION

• Informally: bigO notation denotes an upper bound for an algorithms asymptotic runtime
BIG-O NOTATION

• Informally: bigO notation denotes an upper bound for an algorithms asymptotic runtime

• For example, if an algorithm A is $O(\log n)$, that means some logarithmic function upper bounds A.
BIG-O NOTATION

• Formally, a function $f(n)$ is $O(g(n))$ if there exists a c and n_0 such that:

 • For all $n \geq n_0$, $f(n) < c \times g(n)$

• To prove a function is $O(g(n))$, simply find the c and n_0
BIG-O NOTATION

• Example: is $5n^3 + 2n$ in $O(n^4)$?
• Can we find a c, n_0 such that:
• $5n^3 + 2n \leq c \times n^4$ for all $n \geq n_0$
BIG-O NOTATION

• This is an upper bound, so if
 $5n^3 + 2n$ is in $O(n^4)$, then
 $5n^3 + 2n$ is in $O(n^5)$ and $O(n^n)$
BIG-O NOTATION

• This is an upper bound, so if
 \(5n^3 + 2n \) is in \(O(n^4) \), then
 \(5n^3 + 2n \) is in \(O(n^5) \) and \(O(n^n) \)

• Is \(5n^3 + 2n \) in \(O(n^3) \)?
• This is an upper bound, so if
\[5n^3 + 2n \text{ is in } O(n^4), \text{ then} \]
\[5n^3 + 2n \text{ is in } O(n^5) \text{ and } O(n^n) \]
• Is \(5n^3 + 2n \) in \(O(n^3) \)?
• Yes, let \(c \) be 7 and \(n > 1 \)
BIG-O NOTATION

• Big-O is for upper bounds.
BIG-O NOTATION

• Big-O is for upper bounds.
• Its equivalent for lower bounds is big Omega
BIG-O NOTATION

• Big-O is for upper bounds.

• Its equivalent for lower bounds is big Omega

Formally, a function $f(n)$ is $\Omega(g(n))$ if there exists a c and $n_0 > 0$ such that:

• For all $n \geq n_0$, $f(n) > c \times g(n)$
BIG-O NOTATION

• If a function $f(n)$ is in $O(g(n))$ and $\Omega(g(n))$, then $g(n)$ is a tight bound on $f(n)$, we call this big theta.
If a function $f(n)$ is in $O(g(n))$ and $\Omega(g(n))$, then $g(n)$ is a tight bound on $f(n)$, we call this big theta.

Formally, iff $f(n)$ is in $O(g(n))$ and $\Omega(g(n))$, then $f(n)$ is in $\theta(g(n))$.

Note that the two will have different c and n_0.
BIG O NOTATION

- What does this help us with?
 - Sort algorithms into families
BIG O NOTATION

- What does this help us with?
 - Sort algorithms into families
 - $O(1)$: constant
 - $O(\log n)$: logarithmic
 - $O(n)$: linear
 - $O(n^2)$: quadratic
 - $O(n^k)$: polynomial
 - $O(k^n)$: exponential
BIG O NOTATION

• What does this help us with?
 • The constant multiple c lets us organize similar algorithms together.
 • Remember that $\log_a k$ and $\log_b k$ differ by a constant factor?
BIG O NOTATION

• What does this help us with?
 • The constant multiple c lets us organize similar algorithms together.
 • Remember that $\log_a k$ and $\log_b k$ differ by a constant factor?
 • That makes all logs in the same family
NEXT CLASS

• Recurrence Relations
 • How to analyze recursively defined functions

• Analyzing the naïve dictionary implementations