
CSE 373 
OCTOBER 4TH  – ALGORITHM ANALYSIS 



TODAY’S LECTURE 
•  Algorithm Analysis 

•  Asymptotic analysis 
•  bigO notation 



PROJECT 1 
•  Checkpoint 1 due at 11:30 pm 
•  Submit only the files listed in the 

deliverables section 
•  If you submit as a group, make sure all 

files have both team names 
•  Helpful if you could add a comment on 

your canvas submission indicating your 
partner 



REVIEW 
•  Algorithm Analysis 

•  Testing is for implementations 
•  Analysis is for algorithms 



REVIEW 
•  Algorithm Analysis 

•  Testing is for implementations 
•  Analysis is for algorithms 
•  Runtime, memory and correctness 



REVIEW 
•  Algorithm Analysis 

•  Testing is for implementations 
•  Analysis is for algorithms 
•  Runtime, memory and correctness 
•  Best case, average case, worst case 



REVIEW 
•  Algorithm Analysis 

•  Testing is for implementations 
•  Analysis is for algorithms 
•  Runtime, memory and correctness 
•  Best case, average case, worst case 
•  Over groups of inputs, not just one 



ALGORITHM ANALYSIS 
•  Principles of analysis 
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ALGORITHM ANALYSIS 
•  Principles of analysis 

•  Determining performance behavior 
•  How does an algorithm react to new data 

or changes? 
•  Independent of language or 

implementation 
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BINARY SEARCH 
•  Analyzing binary search. 
•  What is the worst case? 

•  When the item is not in the list 
•  How long does this take to run? 
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BINARY SEARCH 
•  Consider the algorithm 
public int binarySearch(int[] data, int toFind){!

int low = 0; int high = data.length-1;!

while(low <= high){!

!int mid = (low+high)/2;!

!if(toFind>mid) low = mid+1; continue;!

!else if(toFind<mid) high = mid-1; continue; !

!else return mid;!

}!

return -1;!

}!

  

!
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BINARY SEARCH 
•  What is important here? 

•  At each iteration, we eliminate half of the 
remaining elements. 

•  How long will it take to reach the end? 
•  At first iteration, N/2 elements remain 
•  At second, N/4 elements remain 
•  At the kth iteration?   
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BINARY SEARCH 
•  At the kth iteration: 

•  N/2k elements remain. 
•  When does this terminate? 

•  When N/2k = 1   
•  How many iterations then? Solve for k. 
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BINARY SEARCH 
•  Solve for k. 
N / 2k = 1!

N = 2k!

log2 N = k!

•  Is this exact? 
•  Where was the error introduced? 

•  N can be things other than powers of two 
•  Ceiling and floor rounding 

!
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ANALYSIS 
•  If this isn’t exact, is it still correct? 
•  Yes. We care about asymptotic growth. 

•  How a the runtime of an algorithm grows 
with big data 

•  To incorporate this perspective, we use 
bigO notation 

!
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BIG-O NOTATION 
•  Informally: bigO notation denotes an 

upper bound for an algorithms 
asymptotic runtime 

•  For example, if an algorithm A is  
O(log n), that means some logarithmic 
function upper bounds A. 

!



BIG-O NOTATION 
•  Formally, a function f(n) is O(g(n)) if 

there exists a c and n0 such that: 
•  For all n > n0, f(n) < c*g(n)!
•  To prove a function is O(g(n)), simply find 

the c and n0 

!



BIG-O NOTATION 
•  Example: is 5n3 + 2n in O(n4)? 
•  Can we find a c, n0 such that: 
•  5n3 + 2n < c*n4 for all n > n0!
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BIG-O NOTATION 
•  This is an upper bound, so if 
5n3 + 2n is in O(n4), then  
5n3 + 2n is in O(n5) and O(nn)!
•  Is 5n3 + 2n in O(n3)? 
•  Yes, let c be 7 and n > 1 
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•  Big-O is for upper bounds. 
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BIG-O NOTATION 
•  Big-O is for upper bounds. 
•  Its equivalent for lower bounds is big 

Omega  
Formally, a function f(n) is Ω(g(n)) if 
there exists a c and n0 > 0 such that: 
•  For all n > n0, f(n) > c*g(n)!
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BIG-O NOTATION 
•  If a function f(n) is in O(g(n)) and 
Ω(g(n)), then g(n) is a tight bound on 
f(n), we call this big theta. 
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BIG-O NOTATION 
•  If a function f(n) is in O(g(n)) and 
Ω(g(n)), then g(n) is a tight bound on 
f(n), we call this big theta. 

•  Formally, iff f(n) is in O(g(n)) and 
Ω(g(n)), then f(n) is in θ(g(n))!

•  Note that the two will have different c 
and n0 

 
 
!



BIG O NOTATION 
•  What does this help us with? 

•  Sort algorithms into families 
  

!



BIG O NOTATION 
•  What does this help us with? 

•  Sort algorithms into families 
•  O(1): constant 
•  O(log n): logarithmic 
•  O(n) : linear 
•  O(n2): quadratic 
•  O(nk): polynomial 
•  O(kn): exponential 
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BIG O NOTATION 
•  What does this help us with? 

•  The constant multiple c lets us organize 
similar algorithms together. 

•  Remember that loga k and logb k differ by 
a constant factor? 

•  That makes all logs in the same family 
  

!



NEXT CLASS 
•  Recurrence Relations 

•  How to analyze recursively defined 
functions 

•  Analyzing the naïve dictionary 
implementations 


