
CSE 373
OCTOBER 4TH – ALGORITHM ANALYSIS

TODAY’S LECTURE
•  Algorithm Analysis

•  Asymptotic analysis
•  bigO notation

PROJECT 1
•  Checkpoint 1 due at 11:30 pm
•  Submit only the files listed in the

deliverables section
•  If you submit as a group, make sure all

files have both team names
•  Helpful if you could add a comment on

your canvas submission indicating your
partner

REVIEW
•  Algorithm Analysis

•  Testing is for implementations
•  Analysis is for algorithms

REVIEW
•  Algorithm Analysis

•  Testing is for implementations
•  Analysis is for algorithms
•  Runtime, memory and correctness

REVIEW
•  Algorithm Analysis

•  Testing is for implementations
•  Analysis is for algorithms
•  Runtime, memory and correctness
•  Best case, average case, worst case

REVIEW
•  Algorithm Analysis

•  Testing is for implementations
•  Analysis is for algorithms
•  Runtime, memory and correctness
•  Best case, average case, worst case
•  Over groups of inputs, not just one

ALGORITHM ANALYSIS
•  Principles of analysis

!

ALGORITHM ANALYSIS
•  Principles of analysis

•  Determining performance behavior
•  How does an algorithm react to new data

or changes?
•  Independent of language or

implementation

!

ALGORITHM ANALYSIS
•  Example: find()

•  Sorted v Unsorted
•  How is insert impacted?

!

ALGORITHM ANALYSIS
•  Example: find()

•  Sorted v Unsorted
•  How is insert impacted?

•  A sorted array gives us faster find
because we can use binary search

!

ALGORITHM ANALYSIS
•  Example: find()

•  Sorted v Unsorted
•  How is insert impacted?

•  A sorted array gives us faster find
because we can use binary search

•  Can we prove that this is the case?

!

ALGORITHM ANALYSIS
•  Example: find()

•  Sorted v Unsorted
•  How is insert impacted?

•  A sorted array gives us faster find
because we can use binary search

•  Can we prove that this is the case?

!

BINARY SEARCH
•  Analyzing binary search.
•  What is the worst case?

!

BINARY SEARCH
•  Analyzing binary search.
•  What is the worst case?

•  When the item is not in the list

!

BINARY SEARCH
•  Analyzing binary search.
•  What is the worst case?

•  When the item is not in the list
•  How long does this take to run?

!

BINARY SEARCH
•  Consider the algorithm
public int binarySearch(int[] data, int toFind){!

int low = 0; int high = data.length-1;!

while(low <= high){!

!int mid = (low+high)/2;!

!if(toFind>mid) low = mid+1; continue;!

!else if(toFind<mid) high = mid-1; continue; !

!else return mid;!

}!

return -1;!

}!

!

BINARY SEARCH
•  What is important here?

!

BINARY SEARCH
•  What is important here?

•  At each iteration, we eliminate half of the
remaining elements.

!

BINARY SEARCH
•  What is important here?

•  At each iteration, we eliminate half of the
remaining elements.

•  How long will it take to reach the end?

!

BINARY SEARCH
•  What is important here?

•  At each iteration, we eliminate half of the
remaining elements.

•  How long will it take to reach the end?

!

BINARY SEARCH
•  What is important here?

•  At each iteration, we eliminate half of the
remaining elements.

•  How long will it take to reach the end?
•  At first iteration, N/2 elements remain

!

BINARY SEARCH
•  What is important here?

•  At each iteration, we eliminate half of the
remaining elements.

•  How long will it take to reach the end?
•  At first iteration, N/2 elements remain
•  At second, N/4 elements remain

!

BINARY SEARCH
•  What is important here?

•  At each iteration, we eliminate half of the
remaining elements.

•  How long will it take to reach the end?
•  At first iteration, N/2 elements remain
•  At second, N/4 elements remain
•  At the kth iteration?

!

BINARY SEARCH
•  At the kth iteration:

•  N/2k elements remain.
•  When does this terminate?

!

BINARY SEARCH
•  At the kth iteration:

•  N/2k elements remain.
•  When does this terminate?

•  When N/2k = 1

!

BINARY SEARCH
•  At the kth iteration:

•  N/2k elements remain.
•  When does this terminate?

•  When N/2k = 1
•  How many iterations then? Solve for k.

!

BINARY SEARCH
•  Solve for k.
N / 2k = 1
!

BINARY SEARCH
•  Solve for k.
N / 2k = 1!

N = 2k
!

BINARY SEARCH
•  Solve for k.
N / 2k = 1!

N = 2k!

log2 N = k!

!

BINARY SEARCH
•  Solve for k.
N / 2k = 1!

N = 2k!

log2 N = k!

•  Is this exact?

!

BINARY SEARCH
•  Solve for k.
N / 2k = 1!

N = 2k!

log2 N = k!

•  Is this exact?
•  Where was the error introduced?

!

BINARY SEARCH
•  Solve for k.
N / 2k = 1!

N = 2k!

log2 N = k!

•  Is this exact?
•  Where was the error introduced?

•  N can be things other than powers of two

!

BINARY SEARCH
•  Solve for k.
N / 2k = 1!

N = 2k!

log2 N = k!

•  Is this exact?
•  Where was the error introduced?

•  N can be things other than powers of two
•  Ceiling and floor rounding

!

ANALYSIS
•  If this isn’t exact, is it still correct?

!

ANALYSIS
•  If this isn’t exact, is it still correct?
•  Yes. We care about asymptotic growth.

!

ANALYSIS
•  If this isn’t exact, is it still correct?
•  Yes. We care about asymptotic growth.

•  How a the runtime of an algorithm grows
with big data

!

ANALYSIS
•  If this isn’t exact, is it still correct?
•  Yes. We care about asymptotic growth.

•  How a the runtime of an algorithm grows
with big data

•  To incorporate this perspective, we use
bigO notation

!

BIG-O NOTATION
•  Informally: bigO notation denotes an

upper bound for an algorithms
asymptotic runtime

!

BIG-O NOTATION
•  Informally: bigO notation denotes an

upper bound for an algorithms
asymptotic runtime

•  For example, if an algorithm A is
O(log n), that means some logarithmic
function upper bounds A.

!

BIG-O NOTATION
•  Formally, a function f(n) is O(g(n)) if

there exists a c and n0 such that:
•  For all n > n0, f(n) < c*g(n)!
•  To prove a function is O(g(n)), simply find

the c and n0

!

BIG-O NOTATION
•  Example: is 5n3 + 2n in O(n4)?
•  Can we find a c, n0 such that:
•  5n3 + 2n < c*n4 for all n > n0!

!

BIG-O NOTATION
•  This is an upper bound, so if
5n3 + 2n is in O(n4), then
5n3 + 2n is in O(n5) and O(nn)!

!

BIG-O NOTATION
•  This is an upper bound, so if
5n3 + 2n is in O(n4), then
5n3 + 2n is in O(n5) and O(nn)!
•  Is 5n3 + 2n in O(n3)?

!

BIG-O NOTATION
•  This is an upper bound, so if
5n3 + 2n is in O(n4), then
5n3 + 2n is in O(n5) and O(nn)!
•  Is 5n3 + 2n in O(n3)?
•  Yes, let c be 7 and n > 1

!

BIG-O NOTATION
•  Big-O is for upper bounds.

!

BIG-O NOTATION
•  Big-O is for upper bounds.
•  Its equivalent for lower bounds is big

Omega

!

BIG-O NOTATION
•  Big-O is for upper bounds.
•  Its equivalent for lower bounds is big

Omega
Formally, a function f(n) is Ω(g(n)) if
there exists a c and n0 > 0 such that:
•  For all n > n0, f(n) > c*g(n)!

!

BIG-O NOTATION
•  If a function f(n) is in O(g(n)) and
Ω(g(n)), then g(n) is a tight bound on
f(n), we call this big theta.

!

BIG-O NOTATION
•  If a function f(n) is in O(g(n)) and
Ω(g(n)), then g(n) is a tight bound on
f(n), we call this big theta.

•  Formally, iff f(n) is in O(g(n)) and
Ω(g(n)), then f(n) is in θ(g(n))!

•  Note that the two will have different c
and n0

!

BIG O NOTATION
•  What does this help us with?

•  Sort algorithms into families

!

BIG O NOTATION
•  What does this help us with?

•  Sort algorithms into families
•  O(1): constant
•  O(log n): logarithmic
•  O(n) : linear
•  O(n2): quadratic
•  O(nk): polynomial
•  O(kn): exponential

!

BIG O NOTATION
•  What does this help us with?

•  The constant multiple c lets us organize
similar algorithms together.

•  Remember that loga k and logb k differ by
a constant factor?

!

BIG O NOTATION
•  What does this help us with?

•  The constant multiple c lets us organize
similar algorithms together.

•  Remember that loga k and logb k differ by
a constant factor?

•  That makes all logs in the same family

!

NEXT CLASS
•  Recurrence Relations

•  How to analyze recursively defined
functions

•  Analyzing the naïve dictionary
implementations

