CSE 373

OCTOBER 4TH – ALGORITHM ANALYSIS

TODAY'S LECTURE

- Algorithm Analysis
 - Asymptotic analysis
 - bigO notation

PROJECT 1

- Checkpoint 1 due at 11:30 pm
- Submit only the files listed in the deliverables section
- If you submit as a group, make sure all files have both team names
- Helpful if you could add a comment on your canvas submission indicating your partner

- Algorithm Analysis
 - Testing is for implementations
 - Analysis is for algorithms

- Algorithm Analysis
 - Testing is for implementations
 - Analysis is for algorithms
 - Runtime, memory and correctness

- Algorithm Analysis
 - Testing is for implementations
 - Analysis is for algorithms
 - Runtime, memory and correctness
 - Best case, average case, worst case

- Algorithm Analysis
 - Testing is for implementations
 - Analysis is for algorithms
 - Runtime, memory and correctness
 - Best case, average case, worst case
 - Over groups of inputs, not just one

Principles of analysis

- Principles of analysis
 - Determining performance behavior
 - How does an algorithm react to new data or changes?
 - Independent of language or implementation

- Example: find()
 - Sorted v Unsorted
 - How is insert impacted?

- Example: find()
 - Sorted v Unsorted
 - How is insert impacted?
 - A sorted array gives us faster find because we can use binary search

- Example: find()
 - Sorted v Unsorted
 - How is insert impacted?
 - A sorted array gives us faster find because we can use binary search
 - Can we **prove** that this is the case?

- Example: find()
 - Sorted v Unsorted
 - How is insert impacted?
 - A sorted array gives us faster find because we can use binary search
 - Can we prove that this is the case?

- Analyzing binary search.
- What is the worst case?

- Analyzing binary search.
- What is the worst case?
 - When the item is not in the list

- Analyzing binary search.
- What is the worst case?
 - When the item is not in the list
- How long does this take to run?

Consider the algorithm

}

```
public int binarySearch(int[] data, int toFind){
int low = 0; int high = data.length-1;
while(low <= high){
    int mid = (low+high)/2;
    if(toFind>mid) low = mid+1; continue;
    else if(toFind<mid) high = mid-1; continue;
    else return mid;
}
return -1;</pre>
```

• What is important here?

- What is important here?
 - At each iteration, we eliminate half of the remaining elements.

- What is important here?
 - At each iteration, we eliminate half of the remaining elements.
- How long will it take to reach the end?

- What is important here?
 - At each iteration, we eliminate half of the remaining elements.
- How long will it take to reach the end?

- What is important here?
 - At each iteration, we eliminate half of the remaining elements.
- How long will it take to reach the end?
 - At first iteration, N/2 elements remain

- What is important here?
 - At each iteration, we eliminate half of the remaining elements.
- How long will it take to reach the end?
 - At first iteration, N/2 elements remain
 - At second, N/4 elements remain

- What is important here?
 - At each iteration, we eliminate half of the remaining elements.
- How long will it take to reach the end?
 - At first iteration, N/2 elements remain
 - At second, N/4 elements remain
 - At the kth iteration?

- At the kth iteration:
 - N/2^k elements remain.
- When does this terminate?

- At the kth iteration:
 - N/2^k elements remain.
- When does this terminate?
 - When N/2^k = 1

- At the kth iteration:
 - N/2^k elements remain.
- When does this terminate?
 - When N/2^k = 1
- How many iterations then? Solve for k.

- Solve for k.
- $N / 2^{k} = 1$

- Solve for k.
- $N / 2^{k} = 1$
- $N = 2^k$

- Solve for k.
- $N / 2^{k} = 1$
- $N = 2^k$
- $\log_2 N = k$

- Solve for k.
- $N / 2^{k} = 1$
- $N = 2^k$
- $\log_2 N = k$
- Is this exact?

- Solve for k.
- $N / 2^{k} = 1$
- $N = 2^{k}$
- $\log_2 N = k$
- Is this exact?
- Where was the error introduced?

- Solve for k.
- $N / 2^{k} = 1$
- $N = 2^k$
- $\log_2 N = k$
- Is this exact?
- Where was the error introduced?
 - N can be things other than powers of two

- Solve for k.
- $N / 2^{k} = 1$
- $N = 2^k$
- $\log_2 N = k$
- Is this exact?
- Where was the error introduced?
 - N can be things other than powers of two
 - Ceiling and floor rounding

• If this isn't exact, is it still correct?

ANALYSIS

- If this isn't exact, is it still correct?
- Yes. We care about asymptotic growth.

ANALYSIS

- If this isn't exact, is it still correct?
- Yes. We care about asymptotic growth.
 - How a the runtime of an algorithm grows with big data

ANALYSIS

- If this isn't exact, is it still correct?
- Yes. We care about asymptotic growth.
 - How a the runtime of an algorithm grows with big data
- To incorporate this perspective, we use bigO notation

 Informally: bigO notation denotes an upper bound for an algorithms asymptotic runtime

- Informally: bigO notation denotes an upper bound for an algorithms asymptotic runtime
- For example, if an algorithm A is
 O(log n), that means some logarithmic function upper bounds A.

- Formally, a function f(n) is O(g(n)) if there exists a c and n_o such that:
- For all $n \ge n_0$, f(n) < c*g(n)
- To prove a function is O(g(n)), simply find the c and n₀

- Example: is $5n^3 + 2n in O(n^4)$?
- Can we find a c, n_0 such that:
- $5n^3$ + $2n \leq c * n^4$ for all $n \geq n_0$

- This is an upper bound, so if
- $5n^3 + 2n$ is in O(n^4), then
- $5n^3 + 2n is in O(n^5)$ and $O(n^n)$

- This is an upper bound, so if
- $5n^3 + 2n$ is in O(n^4), then
- $5n^3 + 2n \text{ is in } O(n^5)$ and $O(n^n)$
- $ls 5n^3 + 2n in O(n^3)$?

- This is an upper bound, so if
- $5n^3 + 2n$ is in O(n^4), then
- $5n^3 + 2n \text{ is in } O(n^5)$ and $O(n^n)$
- $ls 5n^3 + 2n in O(n3)?$
- Yes, let c be 7 and n > 1

• Big-O is for upper bounds.

- Big-O is for upper bounds.
- Its equivalent for lower bounds is big Omega

- Big-O is for upper bounds.
- Its equivalent for lower bounds is big Omega
- Formally, a function f(n) is $\Omega(g(n))$ if there exists a c and $n_0 > 0$ such that:
- For all $n \ge n_0$, f(n) > c*g(n)

 If a function f(n) is in O(g(n)) and Ω(g(n)), then g(n) is a tight bound on f(n), we call this big theta.

- If a function f(n) is in O(g(n)) and Ω(g(n)), then g(n) is a tight bound on f(n), we call this big theta.
- Formally, iff f(n) is in O(g(n)) and $\Omega(g(n))$, then f(n) is in $\theta(g(n))$
- Note that the two will have different c and n₀

- What does this help us with?
 - Sort algorithms into families

- What does this help us with?
 - Sort algorithms into families
 - O(1): constant
 - O(log n): logarithmic
 - O(n) : linear
 - O(n²): quadratic
 - O(n^k): polynomial
 - O(kⁿ): exponential

- What does this help us with?
 - The constant multiple c lets us organize similar algorithms together.
 - Remember that log_a k and log_b k differ by a constant factor?

- What does this help us with?
 - The constant multiple c lets us organize similar algorithms together.
 - Remember that log_a k and log_b k differ by a constant factor?
 - That makes all logs in the same family

NEXT CLASS

- Recurrence Relations
 - How to analyze recursively defined functions
- Analyzing the naïve dictionary implementations