
CSE 373 
OCTOBER 2ND – DICTIONARY ADT 



TODAY’S LECTURE 
•  Project 1 

•  JUnit 
•  Generics 
•  Iterators 

•  Dictionary 
•  ADT 
•  Implementations 

•  Analysis 



OVERLOAD 
•  Overload form is out 

•  https://goo.gl/forms/2pFBteeXg5L7wdC12 
•  Many of you have already been added 
•  If you haven’t fill out this form ASAP and 

we’ll fill our remaining seats 



PROJECT 1 
•  Checkpoint 1 due Wednesday 
•  Remember, 50% of lost points back 
•  Teams of up to 2, specify clearly 



JUNIT: TESTING 
FRAMEWORK 

A Java library for unit testing, comes included with Eclipse 
•  JUnit is distributed as a "JAR" which is a compressed archive 

containing Java .class files 
 
import org.junit.Test;!
import static org.junit.Assert.*;!
!
public class name {!
!...!
!
!@Test!
!public void name() { // a test case method!
!  ...!
!}!
}!
 

 A method with @Test is flagged as a JUnit test case and run 



JUNIT ASSERTS AND 
EXCEPTIONS 
A	
  test	
  will	
  pass	
  if	
  the	
  assert	
  statements	
  all	
  pass	
  and	
  if	
  no	
  excep4on	
  thrown.	
  	
  
Examples	
  of	
  assert	
  statements:	
  

•  assertTrue(value)!
•  assertFalse(value)!
•  assertEquals(expected, actual)!
•  assertNull(value)!
•  assertNotNull(value)!
•  fail()!
!

Tests	
  can	
  expect	
  excep4ons	
  	
  
@Test(expected = ExceptionType.class)!
public void name() {!
!...!

}!



JUNIT 
•  Use assertions to prescribe expected 

behavior 
•  If a test “asserts” something should 

happen, the test will fail if it doesn’t 
•  Use the testing cases from Friday to 

create good test cases 



JUNIT 
•  This is new for you, but it is important to 

learn now. 
•  Projects will have more testing later in 

the quarter 
•  Checkpoint 1 is a good opportunity to 

experiment and learn the framework on 
low stakes 



GENERICS 
•  Projects in this course will use Java 

generics 
•  Allows implementation of data structures 

for non-specific data types 
•  https://docs.oracle.com/javase/tutorial/

java/generics/index.html 
•  Oracle tutorial is pretty good here 



ITERATORS 
•  An iterator is a Java object that goes over a 

collection of data 
•  Supports two functions 

•  boolean hasNext(): returns true if the 
iterator has another object 

•  E next(): returns the next object from the 
data structure 
•  “E” is a Java generic and it represents 

whatever data is actually in the data 
structure. 



ITERATORS 
•  What is “next”? 

•  Depends on how we want to iterate through the 
elements 

•  Examples: 
•  BFSIterator 
•  PathIterator 
•  DuplicateIterator 
•  SortedIterator 



DICTIONARY ADT 
•  New abstract data type 



DICTIONARY ADT 
•  New abstract data type 



DICTIONARY ADT 
•  New abstract data type 

•  Dictionary (aka Map) 
•  Data – Key and Value pairs 



DICTIONARY ADT 
•  New abstract data type 

•  Dictionary (aka Map) 
•  Data – Key and Value pairs 

•  Keys: must be comparable, used for lookup 



DICTIONARY ADT 
•  New abstract data type 

•  Dictionary (aka Map) 
•  Data – Key and Value pairs 

•  Keys: must be comparable, used for lookup 
•  Values: the actual data itself 



DICTIONARY ADT 
•  New abstract data type 

•  Dictionary (aka Map) 
•  Data – Key and Value pairs 

•  Keys: must be comparable, used for lookup 
•  Values: the actual data itself 

•  Example (Store inventory): 



DICTIONARY ADT 
•  New abstract data type 

•  Dictionary (aka Map) 
•  Data – Key and Value pairs 

•  Keys: must be comparable, used for lookup 
•  Values: the actual data itself 

•  Example (Store inventory): 
•  Keys: IDs (barcodes) 
•  Values: Product information 



DICTIONARY ADT 
•  Operations  



DICTIONARY ADT 
•  Operations  

•  insert(key, value): inserts the key, value 
pair into the dictionary. Overwrites the old value if 
the key is already in the dictionary. 



DICTIONARY ADT 
•  Operations  

•  insert(key, value): inserts the key, value 
pair into the dictionary. Overwrites the old value if 
the key is already in the dictionary. 

•  find(key): returns the stored value for a 
particular key in the dictionary, returns null if not 
found. 



DICTIONARY ADT 
•  Operations  

•  insert(key, value): inserts the key, value 
pair into the dictionary. Overwrites the old value if 
the key is already in the dictionary. 

•  find(key): returns the stored value for a 
particular key in the dictionary, returns null if not 
found. 

•  delete(key): removes the key, value pair 
denoted by the key from the dictionary. 



SET ADT 
•  Slightly different from Dictionary 



SET ADT 
•  Slightly different from Dictionary 
•  No values, the set only cares if a key is 

present or not 



SET ADT 
•  Slightly different from Dictionary 
•  No values, the set only cares if a key is 

present or not 
•  Find, insert and delete have few differences 



SET ADT 
•  Slightly different from Dictionary 
•  No values, the set only cares if a key is 

present or not 
•  Find, insert and delete have few differences 
•  Possible to implement other functions from 

sets 



SET ADT 
•  Slightly different from Dictionary 
•  No values, the set only cares if a key is 

present or not 
•  Find, insert and delete have few differences 
•  Possible to implement other functions from 

sets 
•  Union, intersection, difference 



APPLICATIONS 
•  Store information in key, value pairs 

•  Very common usage pattern 



APPLICATIONS 
•  Store information in key, value pairs 

•  Very common usage pattern 
•  Phone directories 
•  Indexing 
•  OS page tables 
•  Databases 



IMPLEMENTATIONS 
•  Important to allow fast operations over the 

keys 



IMPLEMENTATIONS 
•  Important to allow fast operations over the 

keys 
•  Dependent on what the client uses most 



IMPLEMENTATIONS 
•  Important to allow fast operations over the 

keys 
•  Dependent on what the client uses most 
•  Could be many lookups and few inserts 



IMPLEMENTATIONS 
•  Important to allow fast operations over the 

keys 
•  Dependent on what the client uses most 
•  Could be many lookups and few inserts 

•  Keys and Values should be stored together 
in some way 



IMPLEMENTATIONS 
•  Important to allow fast operations over the 

keys 
•  Dependent on what the client uses most 
•  Could be many lookups and few inserts 

•  Keys and Values should be stored together 
in some way 
•  Both objects in one node 
•  Paired arrays (one stores keys and the other values) 



SIMPLE IMPLEMENTATIONS 
•  Linked Lists 

•  How would this work? 
•  What other properties can we utilize 

here? 



SIMPLE IMPLEMENTATIONS 
•  Linked Lists 

•  How would this work? 
•  What other properties can we utilize 

here? 
•  Sortedness? Singly or doubly-linked? 
•  Duplicate finding? 



SIMPLE IMPLEMENTATIONS 
•  Arrays 

•  Sortedness? 
•  Resizing? 
•  <Key, Value> Pairing? 



SIMPLE IMPLEMENTATIONS 
•  Are there benefits of one over the other? 

•  Need methods of analytical analysis 



ALGORITHM ANALYSIS 
•  Important topic. Why? 

•  Show that an implementation is better. 



ALGORITHM ANALYSIS 
•  Important topic. Why? 

•  Show that an implementation is better. 
•  What do we mean by better? 

•  Fewer clock cycles 
•  More efficient memory usage 
•  Correctness 



ALGORITHM ANALYSIS 
•  Math review 
•  Logarithms 

•  log2 x = y when x = 2y!

•  How does this grow? 



ALGORITHM ANALYSIS 
•  Math review 
•  Logarithms 

•  log2 x = y when x = 2y!

•  How does this grow? Slowly 
•  A balanced tree has a height ~log2 n 
•  logk x differs from logj x by a 

constant factor 



ALGORITHM ANALYSIS 
•  Operations 

•  log(A*B) = log(A) + log(B)!
•  log(A/B) = log(A) – log(B)!
•  log(AB) = B * log(A)!



ALGORITHM ANALYSIS 
•  Floor and ceiling 
!



ALGORITHM ANALYSIS 
•  Floor and ceiling 

•  Integer rounding, computers operate in 
integer quantities 

•  Clock cycles 
•  Memory bytes 

  

!



ALGORITHM ANALYSIS 
•  Floor and ceiling 

•  Integer rounding, computers operate in 
integer quantities 

•  Clock cycles 
•  Memory bytes 

Floor :  ⎣X⎦ denotes largest integer < x 
Ceiling:  ⎡X⎤ denotes smallest integer > x 

  

!



ALGORITHM ANALYSIS 
•  Operations 

  

!



ALGORITHM ANALYSIS 
•  Operations 

•  Arithmetic 
•  Comparisons 
•  Memory reads/writes 

•  Loops and functions are just chains of 
these operations.   

!



ALGORITHM ANALYSIS 
Int value = 0;!

for(int i; i = 0; i < 10){!

! value++; !!

}!

 

!



ALGORITHM ANALYSIS 
Int value = 0;!

for(int i; i = 0; i < 10){!

! value++; !!

}!

!

How long does this take? 
 

!



ALGORITHM ANALYSIS 
Int value = 0;!

for(int i; i = 0; i < N){!

! value++; !!

}!

!

How long does this take? 
 

!



ALGORITHM ANALYSIS 
•  Principles of analysis 
 

  

!



ALGORITHM ANALYSIS 
•  Principles of analysis 

•  Determining performance behavior 
 

  

!



ALGORITHM ANALYSIS 
•  Principles of analysis 

•  Determining performance behavior 
•  How does an algorithm react to new data 

or changes? 
 

  

!



ALGORITHM ANALYSIS 
•  Principles of analysis 

•  Determining performance behavior 
•  How does an algorithm react to new data 

or changes? 
•  Independent of language or 

implementation 
 

  

!



ALGORITHM ANALYSIS 
•  Example: find()  
•  Suppose an array with 5 elements 
•  One implementation has a sorted array, 

 the other is unsorted 
•  For which one will find() be faster? 
•  How long will it take? 
 

  

!



ALGORITHM ANALYSIS 

4 2 5 3 1 

1 2 3 4 5 

•  Find(1) 
 

  

!



ALGORITHM ANALYSIS 

4 2 5 3 1 

1 2 3 4 5 

•  Find(1) 
•  How many operations? 
 

  

!



ALGORITHM ANALYSIS 

4 2 5 3 1 

1 2 3 4 5 

•  Find(4)? 
  

!



ALGORITHM ANALYSIS 
•  Not a good representation of how the 

algorithm actually behaves. 
•  Want to access the algorithm on the 

whole, not just over a few inputs 
  

!



ALGORITHM ANALYSIS 
•  Not a good representation of how the 

algorithm actually behaves. 
•  Want to access the algorithm on the 

whole, not just over a few inputs 
•  This is why testing alone isn’t enough 

  

!



ALGORITHM ANALYSIS 
•  Possible solutions? 

  

!



ALGORITHM ANALYSIS 
•  Possible solutions? 

•  Average case: find the average 
performance over all inputs 
  

!



ALGORITHM ANALYSIS 
•  Possible solutions? 

•  Average case: find the average 
performance over all inputs 

•  Worst case: how long the program takes 
to complete the worst case problems. 
  

!



ALGORITHM ANALYSIS 
•  Possible solutions? 

•  Average case: can be difficult to compute 

  

!



ALGORITHM ANALYSIS 
•  Possible solutions? 

•  Average case: can be difficult to compute 
•  What is the average case for binary 

search? 

  

!



ALGORITHM ANALYSIS 
•  Possible solutions? 

•  Worst case: is most commonly used 

  

!



ALGORITHM ANALYSIS 
•  Possible solutions? 

•  Worst case: is most commonly used 
•  Easily compared and gives a good 

estimate of the robustness of an algorithm 

  

!



NEXT CLASS 
•  Asymptotic Analysis 

•  Efficiency and runtime 
•  bigO notation 
•  Array and LinkedList dictionaries 


