CSE 373

DECEMBER 4™ - ALGORITHM DESIGN

ASSORTED MINUTIAE

* P3P3 scripts running right now

* Pushing back resubmission to Friday
* Next Monday office hours

« 12:00-2:00 — last minute exam questions
 Topics list and old practice exams out after
class

* Practice exam (hopefully tomorrow), by
Wednesday night

ASSORTED MINUTIAE

e Course evaluations

Very important to this class and this
department

Above all, they're very important to me

Should only take ~5 minutes, and it's very
valuable feedback

17 of you so far... and I'm going to bug you
until it's above 75%

Save yourself the 15 emails and just fill it out

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

ALGORITHM DESIGN

« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

Guess and Check (Brute Force)
Linear Solving

Divide and Conquer

Greedy-first

Randomization and Approximation
Dynamic Programming

BRUTE FORCE

« Classic naive approach to algorithm design

BRUTE FORCE

« Classic naive approach to algorithm design

* A Brute Force Algorithm revolves primarily
around attempting all possible outcomes

* Bogo sort
» Travelling salesman
* Longest path

BRUTE FORCE

 |If the problem is very difficult, then brute
force may not be the worst solution

» Cracking RSA
* Low-reward problems
« Small, non-time-constrained

LINEAR SOLVING

« Basic linear approach to problem solving

LINEAR SOLVING

« Basic linear approach to problem solving

* If the decider creates a set of correct
answers, find one at a time

LINEAR SOLVING

« Basic linear approach to problem solving

* If the decider creates a set of correct
answers, find one at a time

« Selection sort: find the lowest element at
each run through

« Sometimes, the best solution

 Find the smallest element of an unsorted
array

LINEAR SOLVING

* Important to understand

* What piece of information brings you one
step closer to the final answer?

LINEAR SOLVING

* Important to understand
* What piece of information brings you one
step closer to the final answer?
« Exam problem — simple solution

* Not always bad, O(n) problems lend
themselves well to linear solving

DIVIDE AND CONQUER

* Divide-and-conquer algorithms divide the
work and perform work seperately (usually
recursively)

« Works best for O(nk) problems
* Why?

DIVIDE AND CONQUER

* Divide-and-conquer algorithms divide the
work and perform work seperately (usually
recursively)

« Works best for O(nk) problems (k>1)

* Why?

* If an algorithm is n2 work, and we divide into
two halves, we've halved the work!

DIVIDE AND CONQUER

* Divide-and-conquer algorithms divide the

work and perform work seperately (usually
recursively)

« Works best for O(nk) problems (k>1)

* Why?

* If an algorithm is n2 work, and we divide into
two halves, we've halved the work!

* Recurrences are going to play a big role in
this

GREEDY-FIRST

* A Greedy-first algorithm is any algorithm
that makes the move that seems best now

* These can be divide-and-conquer algorithms
or linear algorithms

* Dijkstra’s and Ford-Fulkerson are both
Greedy-first algorithms

* Notice, however, Dijkstra’s finds the correct
answer easily, and Ford-Fulkerson requires
some augmentation to guarantee
correctness

ALGORITHM DESIGN

 Which approach should be used comes
down to how difficult the problem is

ALGORITHM DESIGN

 Which approach should be used comes
down to how difficult the problem is

 How do we describe problem difficulty?

« P : Set of problems that can be solved In
polynomial time

ALGORITHM DESIGN

 Which approach should be used comes
down to how difficult the problem is

 How do we describe problem difficulty?

« P : Set of problems that can be solved In
polynomial time

* NP : Set of problems that can be verified in
polynomial time

ALGORITHM DESIGN

 Which approach should be used comes
down to how difficult the problem is

 How do we describe problem difficulty?
« P : Set of problems that can be solved In

polynomial time

* NP : Set of problems that can be verified in
polynomial time

« EXP: Set of problems that can be solved in
exponential time

ALGORITHM DESIGN

 Some problems are provably difficult

ALGORITHM DESIGN

 Some problems are provably difficult

 Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

ALGORITHM DESIGN

 Some problems are provably difficult

 Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

* At each move, the computer needs to
approximate the best move

ALGORITHM DESIGN

 Some problems are provably difficult

 Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

* At each move, the computer needs to
approximate the best move

« Certainty always comes at a price

APPROXIMATION DESIGN

 What is approximated in the chess game?

APPROXIMATION DESIGN

 What is approximated in the chess game?

* Board quality — If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

APPROXIMATION DESIGN

 What is approximated in the chess game?

* Board quality — If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

* It is very difficult, branching factor for chess
IS ~35

APPROXIMATION DESIGN

 What is approximated in the chess game?

* Board quality — If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

* It is very difficult, branching factor for chess
IS ~35
* Look as many moves into the future as time

allows to see which move yields the best
outcome

APPROXIMATION DESIGN

 Recognize what piece of information is
costly and useful for your algorithm

APPROXIMATION DESIGN

 Recognize what piece of information is
costly and useful for your algorithm

» Consider if there is a cheap way to estimate
that information

APPROXIMATION DESIGN

 Recognize what piece of information is
costly and useful for your algorithm

» Consider if there is a cheap way to estimate
that information

* Does your client have a tolerance for error?

« Can you map this problem to a similar
problem?

« “Greedy” algorithms are often approximators

RANDOMIZATION DESIGN

« Randomization is also another approach

RANDOMIZATION DESIGN

« Randomization is also another approach

« Selecting a random pivot in quicksort gives
us more certainty in the runtime

RANDOMIZATION DESIGN

« Randomization is also another approach
« Selecting a random pivot in quicksort gives
us more certainty in the runtime

* This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

RANDOMIZATION DESIGN

« Randomization is also another approach
« Selecting a random pivot in quicksort gives
us more certainty in the runtime

* This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

* Two types of randomized algorithms

* Las Vegas — correct result in random time

RANDOMIZATION DESIGN

« Randomization is also another approach
« Selecting a random pivot in quicksort gives
us more certainty in the runtime

* This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

* Two types of randomized algorithms

* Las Vegas — correct result in random time

 Montecarlo — estimated result in deterministic
time

RANDOMIZATION DESIGN

« Can we make a Montecarlo quicksort?

RANDOMIZATION DESIGN

« Can we make a Montecarlo quicksort?

* Runs O(n log n) time, but not guaranteed to
be correct

RANDOMIZATION DESIGN

« Can we make a Montecarlo quicksort?

* Runs O(n log n) time, but not guaranteed to
be correct

» Terminate a random quicksort early!

RANDOMIZATION DESIGN

« Can we make a Montecarlo quicksort?

Runs O(n log n) time, but not guaranteed to
be correct

Terminate a random quicksort early!

If you haven’t gotten the problem in some
constrained time, just return what you have.

RANDOMIZATION DESIGN

 How closeis a sort?

* If we say a list is 90% sorted, what do we
mean?

RANDOMIZATION DESIGN

 How closeis a sort?

* If we say a list is 90% sorted, what do we
mean?

* 90% of elements are smaller than the object
to the right of it?

RANDOMIZATION DESIGN

 How closeis a sort?

* If we say a list is 90% sorted, what do we
mean?

* 90% of elements are smaller than the object
to the right of it?

* The longest sorted subsequence is 90% of
the length?

RANDOMIZATION DESIGN

 How closeis a sort?

* If we say a list is 90% sorted, what do we
mean?

* 90% of elements are smaller than the object
to the right of it?

* The longest sorted subsequence is 90% of
the length?

* Analysis for these problems can be very
tricky, but it’s an important approach

RANDOMIZATION

« Guess and check

RANDOMIZATION

« Guess and check

« How bad is it?

RANDOMIZATION

« Guess and check

 How bad is it?
* Necessary for some hard problems

RANDOMIZATION

« Guess and check

 How bad is it?
* Necessary for some hard problems
 Still can be useful for some easier problems

RANDOMIZATION

« Guess and check

 How bad is it?
* Necessary for some hard problems
 Still can be useful for some easier problems

* Hugely dependent on how “good” the
checker is

RANDOMIZATION

 |f an algorithm has a chance P of returning
the correct answer to an NP-complete
problem in O(n¥) time

RANDOMIZATION

 |f an algorithm has a chance P of returning
the correct answer to an NP-complete
problem in O(n¥) time

* P is our success probability

RANDOMIZATION

 |f an algorithm has a chance P of returning
the correct answer to an NP-complete
problem in O(n¥) time

* P is our success probability

* NP-complete means we can check a solution
in O(nk) time, but we can find the exact
solution in O(k") time — very bad

« Suppose we want to have a confidence
equal to a, how do we get this?

RANDOMIZATION

« Even if P is low, we can increase our chance
of finding the correct solution by running our
randomized estimator multiple times

RANDOMIZATION

« Even if P is low, we can increase our chance
of finding the correct solution by running our
randomized estimator multiple times

* We can verify solutions in polynomial time, so we
can just guess-and-check.

RANDOMIZATION

« Even if P is low, we can increase our chance
of finding the correct solution by running our
randomized estimator multiple times

* We can verify solutions in polynomial time, so we
can just guess-and-check.

* How many times do we need to run our algorithm
to be sure our chance of error is less than a?

RANDOMIZATION

« Even if P is low, we can increase our chance
of finding the correct solution by running our
randomized estimator multiple times

* We can verify solutions in polynomial time, so we
can just guess-and-check.

* How many times do we need to run our algorithm
to be sure our chance of error is less than a?

RANDOMIZATION

(1-p)* = a

RANDOMIZATION

(1-p)* = a
k*1ln(l-p) = 1ln a
k = (1n q)

RANDOMIZATION

« Cool, I guess... but what does this mean?

RANDOMIZATION

« Cool, I guess... but what does this mean?

« Suppose P = 0.5 (we only have a 50% chance of
success on any given run) and a = 0.001, we
only tolerate a 0.1% error

RANDOMIZATION

« Cool, I guess... but what does this mean?

« Suppose P = 0.5 (we only have a 50% chance of
success on any given run) and a = 0.001, we
only tolerate a 0.1% error

« How many runs do we need to get this level of
confidence?

RANDOMIZATION

« Cool, I guess... but what does this mean?

« Suppose P = 0.5 (we only have a 50% chance of
success on any given run) and a = 0.001, we
only tolerate a 0.1% error

« How many runs do we need to get this level of
confidence?

* Only 10! This is a constant multiple

RANDOMIZATION

* In fact, suppose we always want our error to be
0.1%, how does this change with p?

RANDOMIZATION

* In fact, suppose we always want our error to be
0.1%, how does this change with p?

= I|
| |

|
\
\
D! \

40 ¢ \

RANDOMIZATION

« Evenifpis 0.1, only a 10% chance of success,
we only need to run the algorithm 80 times to get
a 0.001 confidence level

RANDOMIZATION

« Evenifpis 0.1, only a 10% chance of success,
we only need to run the algorithm 80 times to get

a 0.001 confidence level

« What does this mean?

RANDOMIZATION

« Evenifpis 0.1, only a 10% chance of success,
we only need to run the algorithm 80 times to get

a 0.001 confidence level

« What does this mean?

- Randomized algorithms don't have to be
complicated, if you can create a reasonable
guess and can verify it in a short amount of time,
then you can get good performance just from
running repeatedly.

RANDOMIZATION CONCLUSION

« Good for estimating difficult problems in
constrained time

RANDOMIZATION CONCLUSION

« Good for estimating difficult problems in
constrained time

* Relies on the quality of the guess

RANDOMIZATION CONCLUSION

« Good for estimating difficult problems in
constrained time

* Relies on the quality of the guess

 Important approach to consider in modern
computing

CONCLUSION

* Be prepared for the algorithm design question
on the final

» Understand how to go about getting the solution
* Rigorous analysis, of both runtime and memory
« Defend all design decisions

* More points for explanation than for cleverness

CONCLUSION

e Course evaluations

o https://uw.iasystem.org/survey/183488

