CSE 373

DECEMBER 4™ - ALGORITHM DESIGN




ASSORTED MINUTIAE

* P3P3 scripts running right now

* Pushing back resubmission to Friday
* Next Monday office hours

« 12:00-2:00 — last minute exam questions
 Topics list and old practice exams out after
class

* Practice exam (hopefully tomorrow), by
Wednesday night




ASSORTED MINUTIAE

e Course evaluations

Very important to this class and this
department

Above all, they're very important to me

Should only take ~5 minutes, and it's very
valuable feedback

17 of you so far... and I'm going to bug you
until it's above 75%

Save yourself the 15 emails and just fill it out
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« Solving well known problems is great, but
how can we use these lessons to approach
new problems?

Guess and Check (Brute Force)
Linear Solving

Divide and Conquer

Greedy-first

Randomization and Approximation
Dynamic Programming
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« Classic naive approach to algorithm design

* A Brute Force Algorithm revolves primarily
around attempting all possible outcomes

* Bogo sort
» Travelling salesman
* Longest path




BRUTE FORCE

 |If the problem is very difficult, then brute
force may not be the worst solution

» Cracking RSA
* Low-reward problems
« Small, non-time-constrained
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« Basic linear approach to problem solving

* If the decider creates a set of correct
answers, find one at a time

« Selection sort: find the lowest element at
each run through

« Sometimes, the best solution

 Find the smallest element of an unsorted
array
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LINEAR SOLVING

* Important to understand
* What piece of information brings you one
step closer to the final answer?
« Exam problem — simple solution

* Not always bad, O(n) problems lend
themselves well to linear solving
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DIVIDE AND CONQUER

* Divide-and-conquer algorithms divide the

work and perform work seperately (usually
recursively)

« Works best for O(nk) problems (k>1)

* Why?

* If an algorithm is n2 work, and we divide into
two halves, we've halved the work!

* Recurrences are going to play a big role in
this




GREEDY-FIRST

* A Greedy-first algorithm is any algorithm
that makes the move that seems best now

* These can be divide-and-conquer algorithms
or linear algorithms

* Dijkstra’s and Ford-Fulkerson are both
Greedy-first algorithms

* Notice, however, Dijkstra’s finds the correct
answer easily, and Ford-Fulkerson requires
some augmentation to guarantee
correctness
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ALGORITHM DESIGN

 Which approach should be used comes
down to how difficult the problem is

 How do we describe problem difficulty?
« P : Set of problems that can be solved In

polynomial time

* NP : Set of problems that can be verified in
polynomial time

« EXP: Set of problems that can be solved in
exponential time
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 Some problems are provably difficult

 Humans haven’t beaten a computer in chess
in years, but computers are still far away
from “solving” chess

* At each move, the computer needs to
approximate the best move

« Certainty always comes at a price
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 What is approximated in the chess game?

* Board quality — If you could easily rank which
board layout in order of quality, chess is
simply choosing the best board

* It is very difficult, branching factor for chess
IS ~35
* Look as many moves into the future as time

allows to see which move yields the best
outcome
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 Recognize what piece of information is
costly and useful for your algorithm

» Consider if there is a cheap way to estimate
that information

* Does your client have a tolerance for error?

« Can you map this problem to a similar
problem?

« “Greedy” algorithms are often approximators
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« Randomization is also another approach
« Selecting a random pivot in quicksort gives
us more certainty in the runtime

* This doesn’t impact correctness, a
randomized quicksort still returns a sorted list

* Two types of randomized algorithms

* Las Vegas — correct result in random time

 Montecarlo — estimated result in deterministic
time
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« Can we make a Montecarlo quicksort?

Runs O(n log n) time, but not guaranteed to
be correct

Terminate a random quicksort early!

If you haven’t gotten the problem in some
constrained time, just return what you have.
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 How closeis a sort?

* If we say a list is 90% sorted, what do we
mean?

* 90% of elements are smaller than the object
to the right of it?

* The longest sorted subsequence is 90% of
the length?

* Analysis for these problems can be very
tricky, but it’s an important approach
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« Guess and check

 How bad is it?
* Necessary for some hard problems
 Still can be useful for some easier problems

* Hugely dependent on how “good” the
checker is
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 |f an algorithm has a chance P of returning
the correct answer to an NP-complete
problem in O(n¥) time

* P is our success probability

* NP-complete means we can check a solution
in O(nk) time, but we can find the exact
solution in O(k") time — very bad

« Suppose we want to have a confidence
equal to a, how do we get this?
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« Even if P is low, we can increase our chance
of finding the correct solution by running our
randomized estimator multiple times

* We can verify solutions in polynomial time, so we
can just guess-and-check.

* How many times do we need to run our algorithm
to be sure our chance of error is less than a?
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(1-p)* = a
k*1ln(l-p) = 1ln a
k = (1n q)
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« Cool, I guess... but what does this mean?

« Suppose P = 0.5 (we only have a 50% chance of
success on any given run) and a = 0.001, we
only tolerate a 0.1% error

« How many runs do we need to get this level of
confidence?

* Only 10! This is a constant multiple




RANDOMIZATION
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* In fact, suppose we always want our error to be
0.1%, how does this change with p?
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« Evenifpis 0.1, only a 10% chance of success,
we only need to run the algorithm 80 times to get

a 0.001 confidence level

« What does this mean?

- Randomized algorithms don't have to be
complicated, if you can create a reasonable
guess and can verify it in a short amount of time,
then you can get good performance just from
running repeatedly.
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RANDOMIZATION CONCLUSION

« Good for estimating difficult problems in
constrained time

* Relies on the quality of the guess

 Important approach to consider in modern
computing




CONCLUSION

* Be prepared for the algorithm design question
on the final

» Understand how to go about getting the solution
* Rigorous analysis, of both runtime and memory
« Defend all design decisions

* More points for explanation than for cleverness




CONCLUSION

e Course evaluations

o https://uw.iasystem.org/survey/183488




