CSE 373

DECEMBER 4TH – ALGORITHM DESIGN

ASSORTED MINUTIAE

- P3P3 scripts running right now
 - Pushing back resubmission to Friday
- Next Monday office hours
 - 12:00-2:00 last minute exam questions
 - Topics list and old practice exams out after class
 - Practice exam (hopefully tomorrow), by Wednesday night

ASSORTED MINUTIAE

- Course evaluations
 - Very important to this class and this department
 - Above all, they're very important to me
 - Should only take ~5 minutes, and it's very valuable feedback
 - 17 of you so far... and I'm going to bug you until it's above 75%
 - Save yourself the 15 emails and just fill it out

 Solving well known problems is great, but how can we use these lessons to approach new problems?

- Solving well known problems is great, but how can we use these lessons to approach new problems?
 - Guess and Check (Brute Force)
 - Linear Solving
 - Divide and Conquer
 - Greedy-first
 - Randomization and Approximation
 - Dynamic Programming

BRUTE FORCE

Classic naïve approach to algorithm design

BRUTE FORCE

- Classic naïve approach to algorithm design
- A Brute Force Algorithm revolves primarily around attempting all possible outcomes
 - Bogo sort
 - Travelling salesman
 - Longest path

BRUTE FORCE

- If the problem is very difficult, then brute force may not be the worst solution
 - Cracking RSA
 - Low-reward problems
 - Small, non-time-constrained

Basic linear approach to problem solving

- Basic linear approach to problem solving
- If the decider creates a set of correct answers, find one at a time

- Basic linear approach to problem solving
- If the decider creates a set of correct answers, find one at a time
 - Selection sort: find the lowest element at each run through
- Sometimes, the best solution
 - Find the smallest element of an unsorted array

- Important to understand
 - What piece of information brings you one step closer to the final answer?

- Important to understand
 - What piece of information brings you one step closer to the final answer?
 - Exam problem simple solution
 - Not always bad, O(n) problems lend themselves well to linear solving

DIVIDE AND CONQUER

- Divide-and-conquer algorithms divide the work and perform work seperately (usually recursively)
 - Works best for O(n^k) problems
 - Why?

DIVIDE AND CONQUER

- Divide-and-conquer algorithms divide the work and perform work seperately (usually recursively)
 - Works best for O(n^k) problems (k>1)
 - Why?
 - If an algorithm is n2 work, and we divide into two halves, we've halved the work!

DIVIDE AND CONQUER

- Divide-and-conquer algorithms divide the work and perform work seperately (usually recursively)
 - Works best for O(n^k) problems (k>1)
 - Why?
 - If an algorithm is n2 work, and we divide into two halves, we've halved the work!
 - Recurrences are going to play a big role in this

GREEDY-FIRST

- A Greedy-first algorithm is any algorithm that makes the move that seems best now
 - These can be divide-and-conquer algorithms or linear algorithms
 - Dijkstra's and Ford-Fulkerson are both Greedy-first algorithms
 - Notice, however, Dijkstra's finds the correct answer easily, and Ford-Fulkerson requires some augmentation to guarantee correctness

 Which approach should be used comes down to how difficult the problem is

- Which approach should be used comes down to how difficult the problem is
- How do we describe problem difficulty?
 - P : Set of problems that can be solved in polynomial time

- Which approach should be used comes down to how difficult the problem is
- How do we describe problem difficulty?
 - P : Set of problems that can be solved in polynomial time
 - NP : Set of problems that can be verified in polynomial time

- Which approach should be used comes down to how difficult the problem is
- How do we describe problem difficulty?
 - P : Set of problems that can be solved in polynomial time
 - NP : Set of problems that can be verified in polynomial time
 - EXP: Set of problems that can be solved in exponential time

Some problems are provably difficult

- Some problems are provably difficult
 - Humans haven't beaten a computer in chess in years, but computers are still far away from "solving" chess

- Some problems are provably difficult
 - Humans haven't beaten a computer in chess in years, but computers are still far away from "solving" chess
 - At each move, the computer needs to approximate the best move

- Some problems are provably difficult
 - Humans haven't beaten a computer in chess in years, but computers are still far away from "solving" chess
 - At each move, the computer needs to approximate the best move
 - Certainty always comes at a price

• What is approximated in the chess game?

- What is approximated in the chess game?
 - Board quality If you could easily rank which board layout in order of quality, chess is simply choosing the best board

- What is approximated in the chess game?
 - Board quality If you could easily rank which board layout in order of quality, chess is simply choosing the best board
 - It is very difficult, branching factor for chess is ~35

- What is approximated in the chess game?
 - Board quality If you could easily rank which board layout in order of quality, chess is simply choosing the best board
 - It is very difficult, branching factor for chess is ~35
 - Look as many moves into the future as time allows to see which move yields the best outcome

 Recognize what piece of information is costly and useful for your algorithm

- Recognize what piece of information is costly and useful for your algorithm
 - Consider if there is a cheap way to estimate that information

- Recognize what piece of information is costly and useful for your algorithm
 - Consider if there is a cheap way to estimate that information
 - Does your client have a tolerance for error?
 - Can you map this problem to a similar problem?
 - "Greedy" algorithms are often approximators

Randomization is also another approach

- Randomization is also another approach
 - Selecting a random pivot in quicksort gives us more certainty in the runtime

- Randomization is also another approach
 - Selecting a random pivot in quicksort gives us more certainty in the runtime
 - This doesn't impact correctness, a randomized quicksort still returns a sorted list

- Randomization is also another approach
 - Selecting a random pivot in quicksort gives us more certainty in the runtime
 - This doesn't impact correctness, a randomized quicksort still returns a sorted list
- Two types of randomized algorithms
 - Las Vegas correct result in random time
- Randomization is also another approach
 - Selecting a random pivot in quicksort gives us more certainty in the runtime
 - This doesn't impact correctness, a randomized quicksort still returns a sorted list
- Two types of randomized algorithms
 - Las Vegas correct result in random time
 - Montecarlo estimated result in deterministic time

• Can we make a Montecarlo quicksort?

- Can we make a Montecarlo quicksort?
 - Runs O(n log n) time, but not guaranteed to be correct

- Can we make a Montecarlo quicksort?
 - Runs O(n log n) time, but not guaranteed to be correct
 - Terminate a random quicksort early!

- Can we make a Montecarlo quicksort?
 - Runs O(n log n) time, but not guaranteed to be correct
 - Terminate a random quicksort early!
 - If you haven't gotten the problem in some constrained time, just return what you have.

- How *close* is a sort?
- If we say a list is 90% sorted, what do we mean?

- How *close* is a sort?
- If we say a list is 90% sorted, what do we mean?
 - 90% of elements are smaller than the object to the right of it?

- How *close* is a sort?
- If we say a list is 90% sorted, what do we mean?
 - 90% of elements are smaller than the object to the right of it?
 - The longest sorted subsequence is 90% of the length?

- How *close* is a sort?
- If we say a list is 90% sorted, what do we mean?
 - 90% of elements are smaller than the object to the right of it?
 - The longest sorted subsequence is 90% of the length?
- Analysis for these problems can be very tricky, but it's an important approach

• Guess and check

- Guess and check
 - How bad is it?

- Guess and check
 - How bad is it?
 - Necessary for some hard problems

- Guess and check
 - How bad is it?
 - Necessary for some hard problems
 - Still can be useful for some easier problems

- Guess and check
 - How bad is it?
 - Necessary for some hard problems
 - Still can be useful for some easier problems
 - Hugely dependent on how "good" the checker is

 If an algorithm has a chance P of returning the correct answer to an NP-complete problem in O(n^k) time

- If an algorithm has a chance P of returning the correct answer to an NP-complete problem in O(n^k) time
 - P is our success probability

- If an algorithm has a chance P of returning the correct answer to an NP-complete problem in O(n^k) time
 - P is our success probability
 - NP-complete means we can check a solution in O(n^k) time, but we can find the exact solution in O(kⁿ) time – very bad
 - Suppose we want to have a confidence equal to α, how do we get this?

 Even if P is low, we can increase our chance of finding the correct solution by running our randomized estimator multiple times

- Even if P is low, we can increase our chance of finding the correct solution by running our randomized estimator multiple times
 - We can verify solutions in polynomial time, so we can just guess-and-check.

- Even if P is low, we can increase our chance of finding the correct solution by running our randomized estimator multiple times
 - We can verify solutions in polynomial time, so we can just guess-and-check.
 - How many times do we need to run our algorithm to be sure our chance of error is less than α?

- Even if P is low, we can increase our chance of finding the correct solution by running our randomized estimator multiple times
 - We can verify solutions in polynomial time, so we can just guess-and-check.
 - How many times do we need to run our algorithm to be sure our chance of error is less than α?

 $(1-p)^k = \alpha$

 $(1-p)^{k} = \alpha$ $k*\ln(1-p) = \ln \alpha$ $k = (\ln \alpha)$ $(\ln(1-p))$ $k = \log_{(1-p)} \alpha$

• Cool, I guess... but what does this mean?

- Cool, I guess... but what does this mean?
- Suppose P = 0.5 (we only have a 50% chance of success on any given run) and α = 0.001, we only tolerate a 0.1% error

- Cool, I guess... but what does this mean?
- Suppose P = 0.5 (we only have a 50% chance of success on any given run) and α = 0.001, we only tolerate a 0.1% error
- How many runs do we need to get this level of confidence?

- Cool, I guess... but what does this mean?
- Suppose P = 0.5 (we only have a 50% chance of success on any given run) and α = 0.001, we only tolerate a 0.1% error
- How many runs do we need to get this level of confidence?
 - Only 10! This is a constant multiple

 In fact, suppose we always want our error to be 0.1%, how does this change with p?

 In fact, suppose we always want our error to be 0.1%, how does this change with p?

 Even if p is 0.1, only a 10% chance of success, we only need to run the algorithm 80 times to get a 0.001 confidence level

- Even if p is 0.1, only a 10% chance of success, we only need to run the algorithm 80 times to get a 0.001 confidence level
- What does this mean?

- Even if p is 0.1, only a 10% chance of success, we only need to run the algorithm 80 times to get a 0.001 confidence level
- What does this mean?
 - Randomized algorithms don't have to be complicated, if you can create a *reasonable* guess and can verify it in a short amount of time, then you can get good performance just from running repeatedly.

RANDOMIZATION CONCLUSION

 Good for estimating difficult problems in constrained time

RANDOMIZATION CONCLUSION

- Good for estimating difficult problems in constrained time
- Relies on the quality of the guess

RANDOMIZATION CONCLUSION

- Good for estimating difficult problems in constrained time
- Relies on the quality of the guess
- Important approach to consider in modern computing

CONCLUSION

- Be prepared for the algorithm design question on the final
 - Understand how to go about getting the solution
 - Rigorous analysis, of both runtime and memory
 - Defend all design decisions
 - More points for explanation than for cleverness
CONCLUSION

- Course evaluations
 - https://uw.iasystem.org/survey/183488