
CSE 373 
DECEMBER 4TH – ALGORITHM DESIGN 



ASSORTED MINUTIAE 
•  P3P3 scripts running right now 

•  Pushing back resubmission to Friday 
•  Next Monday office hours 

•  12:00-2:00 – last minute exam questions 
•  Topics list and old practice exams out after 

class 
•  Practice exam (hopefully tomorrow), by 

Wednesday night 



ASSORTED MINUTIAE 
•  Course evaluations 

•  Very important to this class and this 
department 

•  Above all, they’re very important to me 
•  Should only take ~5 minutes, and it’s very 

valuable feedback 
•  17 of you so far… and I’m going to bug you 

until it’s above 75% 
•  Save yourself the 15 emails and just fill it out 



ALGORITHM DESIGN 
•  Solving well known problems is great, but 

how can we use these lessons to approach 
new problems? 



ALGORITHM DESIGN 
•  Solving well known problems is great, but 

how can we use these lessons to approach 
new problems? 
•  Guess and Check (Brute Force) 
•  Linear Solving 
•  Divide and Conquer 
•  Greedy-first 
•  Randomization and Approximation 
•  Dynamic Programming 



BRUTE FORCE 
•  Classic naïve approach to algorithm design 



BRUTE FORCE 
•  Classic naïve approach to algorithm design 
•  A Brute Force Algorithm revolves primarily 

around attempting all possible outcomes 
•  Bogo sort 
•  Travelling salesman 
•  Longest path 



BRUTE FORCE 
•  If the problem is very difficult, then brute 

force may not be the worst solution 
•  Cracking RSA 
•  Low-reward problems 
•  Small, non-time-constrained 



LINEAR SOLVING 
•  Basic linear approach to problem solving 



LINEAR SOLVING 
•  Basic linear approach to problem solving 
•  If the decider creates a set of correct 

answers, find one at a time 



LINEAR SOLVING 
•  Basic linear approach to problem solving 
•  If the decider creates a set of correct 

answers, find one at a time 
•  Selection sort: find the lowest element at 

each run through 
•  Sometimes, the best solution 

•  Find the smallest element of an unsorted 
array 



LINEAR SOLVING 
•  Important to understand 

•  What piece of information brings you one 
step closer to the final answer? 



LINEAR SOLVING 
•  Important to understand 

•  What piece of information brings you one 
step closer to the final answer? 

•  Exam problem – simple solution 
•  Not always bad, O(n) problems lend 

themselves well to linear solving 



DIVIDE AND CONQUER 
•  Divide-and-conquer algorithms divide the 

work and perform work seperately (usually 
recursively) 
•  Works best for O(nk) problems 
•  Why?  



DIVIDE AND CONQUER 
•  Divide-and-conquer algorithms divide the 

work and perform work seperately (usually 
recursively) 
•  Works best for O(nk) problems (k>1) 
•  Why? 
•  If an algorithm is n2 work, and we divide into 

two halves, we’ve halved the work! 



DIVIDE AND CONQUER 
•  Divide-and-conquer algorithms divide the 

work and perform work seperately (usually 
recursively) 
•  Works best for O(nk) problems (k>1) 
•  Why? 
•  If an algorithm is n2 work, and we divide into 

two halves, we’ve halved the work! 
•  Recurrences are going to play a big role in 

this 



GREEDY-FIRST 
•  A Greedy-first algorithm is any algorithm 

that makes the move that seems best now 
•  These can be divide-and-conquer algorithms 

or linear algorithms 
•  Dijkstra’s and Ford-Fulkerson are both 

Greedy-first algorithms 
•  Notice, however, Dijkstra’s finds the correct 

answer easily, and Ford-Fulkerson requires 
some augmentation to guarantee 
correctness 



ALGORITHM DESIGN 
•  Which approach should be used comes 

down to how difficult the problem is 



ALGORITHM DESIGN 
•  Which approach should be used comes 

down to how difficult the problem is 
•  How do we describe problem difficulty? 

•  P : Set of problems that can be solved in 
polynomial time 



ALGORITHM DESIGN 
•  Which approach should be used comes 

down to how difficult the problem is 
•  How do we describe problem difficulty? 

•  P : Set of problems that can be solved in 
polynomial time 

•  NP : Set of problems that can be verified in 
polynomial time 



ALGORITHM DESIGN 
•  Which approach should be used comes 

down to how difficult the problem is 
•  How do we describe problem difficulty? 

•  P : Set of problems that can be solved in 
polynomial time 

•  NP : Set of problems that can be verified in 
polynomial time 

•  EXP: Set of problems that can be solved in 
exponential time 



ALGORITHM DESIGN 
•  Some problems are provably difficult 



ALGORITHM DESIGN 
•  Some problems are provably difficult 

•  Humans haven’t beaten a computer in chess 
in years, but computers are still far away 
from “solving” chess 



ALGORITHM DESIGN 
•  Some problems are provably difficult 

•  Humans haven’t beaten a computer in chess 
in years, but computers are still far away 
from “solving” chess 

•  At each move, the computer needs to 
approximate the best move 



ALGORITHM DESIGN 
•  Some problems are provably difficult 

•  Humans haven’t beaten a computer in chess 
in years, but computers are still far away 
from “solving” chess 

•  At each move, the computer needs to 
approximate the best move 

•  Certainty always comes at a price 



APPROXIMATION DESIGN 
•  What is approximated in the chess game? 



APPROXIMATION DESIGN 
•  What is approximated in the chess game? 

•  Board quality – If you could easily rank which 
board layout in order of quality, chess is 
simply choosing the best board 



APPROXIMATION DESIGN 
•  What is approximated in the chess game? 

•  Board quality – If you could easily rank which 
board layout in order of quality, chess is 
simply choosing the best board 

•  It is very difficult, branching factor for chess 
is ~35 



APPROXIMATION DESIGN 
•  What is approximated in the chess game? 

•  Board quality – If you could easily rank which 
board layout in order of quality, chess is 
simply choosing the best board 

•  It is very difficult, branching factor for chess 
is ~35 

•  Look as many moves into the future as time 
allows to see which move yields the best 
outcome 



APPROXIMATION DESIGN 
•  Recognize what piece of information is 

costly and useful for your algorithm 



APPROXIMATION DESIGN 
•  Recognize what piece of information is 

costly and useful for your algorithm 
•  Consider if there is a cheap way to estimate 

that information 



APPROXIMATION DESIGN 
•  Recognize what piece of information is 

costly and useful for your algorithm 
•  Consider if there is a cheap way to estimate 

that information 
•  Does your client have a tolerance for error? 
•  Can you map this problem to a similar 

problem? 
•  “Greedy” algorithms are often approximators 



RANDOMIZATION DESIGN 
•  Randomization is also another approach 



RANDOMIZATION DESIGN 
•  Randomization is also another approach 

•  Selecting a random pivot in quicksort gives 
us more certainty in the runtime 



RANDOMIZATION DESIGN 
•  Randomization is also another approach 

•  Selecting a random pivot in quicksort gives 
us more certainty in the runtime 

•  This doesn’t impact correctness, a 
randomized quicksort still returns a sorted list 



RANDOMIZATION DESIGN 
•  Randomization is also another approach 

•  Selecting a random pivot in quicksort gives 
us more certainty in the runtime 

•  This doesn’t impact correctness, a 
randomized quicksort still returns a sorted list 

•  Two types of randomized algorithms 
•  Las Vegas – correct result in random time 



RANDOMIZATION DESIGN 
•  Randomization is also another approach 

•  Selecting a random pivot in quicksort gives 
us more certainty in the runtime 

•  This doesn’t impact correctness, a 
randomized quicksort still returns a sorted list 

•  Two types of randomized algorithms 
•  Las Vegas – correct result in random time 
•  Montecarlo – estimated result in deterministic 

time 



RANDOMIZATION DESIGN 
•  Can we make a Montecarlo quicksort? 



RANDOMIZATION DESIGN 
•  Can we make a Montecarlo quicksort? 

•  Runs O(n log n) time, but not guaranteed to 
be correct 



RANDOMIZATION DESIGN 
•  Can we make a Montecarlo quicksort? 

•  Runs O(n log n) time, but not guaranteed to 
be correct 

•  Terminate a random quicksort early! 



RANDOMIZATION DESIGN 
•  Can we make a Montecarlo quicksort? 

•  Runs O(n log n) time, but not guaranteed to 
be correct 

•  Terminate a random quicksort early! 
•  If you haven’t gotten the problem in some 

constrained time, just return what you have. 



RANDOMIZATION DESIGN 
•  How close is a sort? 
•  If we say a list is 90% sorted, what do we 

mean? 



RANDOMIZATION DESIGN 
•  How close is a sort? 
•  If we say a list is 90% sorted, what do we 

mean? 
•  90% of elements are smaller than the object 

to the right of it? 



RANDOMIZATION DESIGN 
•  How close is a sort? 
•  If we say a list is 90% sorted, what do we 

mean? 
•  90% of elements are smaller than the object 

to the right of it? 
•  The longest sorted subsequence is 90% of 

the length? 



RANDOMIZATION DESIGN 
•  How close is a sort? 
•  If we say a list is 90% sorted, what do we 

mean? 
•  90% of elements are smaller than the object 

to the right of it? 
•  The longest sorted subsequence is 90% of 

the length? 
•  Analysis for these problems can be very 

tricky, but it’s an important approach 



RANDOMIZATION 
•  Guess and check 



RANDOMIZATION 
•  Guess and check 

•  How bad is it? 



RANDOMIZATION 
•  Guess and check 

•  How bad is it? 
•  Necessary for some hard problems 



RANDOMIZATION 
•  Guess and check 

•  How bad is it? 
•  Necessary for some hard problems 
•  Still can be useful for some easier problems 



RANDOMIZATION 
•  Guess and check 

•  How bad is it? 
•  Necessary for some hard problems 
•  Still can be useful for some easier problems 
•  Hugely dependent on how “good” the 

checker is 



RANDOMIZATION 
•  If an algorithm has a chance P of returning 

the correct answer to an NP-complete 
problem in O(nk) time 



RANDOMIZATION 
•  If an algorithm has a chance P of returning 

the correct answer to an NP-complete 
problem in O(nk) time 
•  P is our success probability 



RANDOMIZATION 
•  If an algorithm has a chance P of returning 

the correct answer to an NP-complete 
problem in O(nk) time 
•  P is our success probability 
•  NP-complete means we can check a solution 

in O(nk) time, but we can find the exact 
solution in O(kn) time – very bad 

•  Suppose we want to have a confidence 
equal to α, how do we get this? 



RANDOMIZATION 
•  Even if P is low, we can increase our chance 

of finding the correct solution by running our 
randomized estimator multiple times 



RANDOMIZATION 
•  Even if P is low, we can increase our chance 

of finding the correct solution by running our 
randomized estimator multiple times 
•  We can verify solutions in polynomial time, so we 

can just guess-and-check. 



RANDOMIZATION 
•  Even if P is low, we can increase our chance 

of finding the correct solution by running our 
randomized estimator multiple times 
•  We can verify solutions in polynomial time, so we 

can just guess-and-check. 
•  How many times do we need to run our algorithm 

to be sure our chance of error is less than α? 



RANDOMIZATION 
•  Even if P is low, we can increase our chance 

of finding the correct solution by running our 
randomized estimator multiple times 
•  We can verify solutions in polynomial time, so we 

can just guess-and-check. 
•  How many times do we need to run our algorithm 

to be sure our chance of error is less than α? 



RANDOMIZATION 
(1-p)k = α!



RANDOMIZATION 
(1-p)k = α 
k*ln(1-p) = ln α 
k =  (ln α) 
    (ln(1-p)!

k = log(1-p) α 
 !



RANDOMIZATION 
•  Cool, I guess… but what does this mean? 



RANDOMIZATION 
•  Cool, I guess… but what does this mean? 
•  Suppose P = 0.5 (we only have a 50% chance of 

success on any given run) and α = 0.001, we 
only tolerate a 0.1% error 



RANDOMIZATION 
•  Cool, I guess… but what does this mean? 
•  Suppose P = 0.5 (we only have a 50% chance of 

success on any given run) and α = 0.001, we 
only tolerate a 0.1% error 

•  How many runs do we need to get this level of 
confidence? 



RANDOMIZATION 
•  Cool, I guess… but what does this mean? 
•  Suppose P = 0.5 (we only have a 50% chance of 

success on any given run) and α = 0.001, we 
only tolerate a 0.1% error 

•  How many runs do we need to get this level of 
confidence? 
•  Only 10! This is a constant multiple 



RANDOMIZATION 
•  In fact, suppose we always want our error to be 

0.1%, how does this change with p?  



RANDOMIZATION 
•  In fact, suppose we always want our error to be 

0.1%, how does this change with p?  



RANDOMIZATION 
•  Even if p is 0.1, only a 10% chance of success, 

we only need to run the algorithm 80 times to get 
a 0.001 confidence level  



RANDOMIZATION 
•  Even if p is 0.1, only a 10% chance of success, 

we only need to run the algorithm 80 times to get 
a 0.001 confidence level  

•  What does this mean? 



RANDOMIZATION 
•  Even if p is 0.1, only a 10% chance of success, 

we only need to run the algorithm 80 times to get 
a 0.001 confidence level  

•  What does this mean? 
•  Randomized algorithms don’t have to be 

complicated, if you can create a reasonable 
guess and can verify it in a short amount of time, 
then you can get good performance just from 
running repeatedly. 



RANDOMIZATION CONCLUSION 

•  Good for estimating difficult problems in 
constrained time 



RANDOMIZATION CONCLUSION 

•  Good for estimating difficult problems in 
constrained time 

•  Relies on the quality of the guess 



RANDOMIZATION CONCLUSION 

•  Good for estimating difficult problems in 
constrained time 

•  Relies on the quality of the guess 
•  Important approach to consider in modern 

computing 



CONCLUSION 

•  Be prepared for the algorithm design question 
on the final 
•  Understand how to go about getting the solution 
•  Rigorous analysis, of both runtime and memory 
•  Defend all design decisions 
•  More points for explanation than for cleverness 



CONCLUSION 

•  Course evaluations 
•  https://uw.iasystem.org/survey/183488 


