CSE 373

DECEMBER 15T - GRAPH MADNESS

ASSORTED MINUTIAE

* Project3

« Maximum of 3 late days

» Resubmission for all 3 parts by next
Wednesday

* Written Assignment

« Extra Credit
e Next week:

« Monday office hours: 12:00-2:00 in my office

* No office hours next Friday: email me to
make an appointment

TODAY’S LECTURE

* |sometric Graphs
« Last graphs problem

* Network Flow (Disclaimer)
* Graph problem symmetry

NEXT WEEK

* Algorithm Design
« Computability and Complexity

 Exam Review

FINAL EXAM

* Topics list out this weekend
 Tue; December 12, 2017, 2:30-4:20

« Kane 220
Section, exam review

Next Friday, exam review

Practice Exam by next Tuesday

GRAPHS

 Talked a lot about graph representations
 Runtimes and memory
 How difficult can graphs be?

* |s it easier or more difficult to understand
certain parts?

GRAPHS

 Which of these 3 graphs do you think
would be easiest to run Dijkstra’s
algorithm on?

N
-

GRAPHS

 Which of these 3 graphs do you think
would be easiest (for the computer) to
run Dijkstra’s algorithm on?

GRAPHS

* G, and G, are the same graph, i.e. they
are isomorphic

=
B

GRAPHS

* G, and G, are the same graph, i.e. they
are isomorphic

* G;is not

b
)

1 2 3

GRAPHS

* G, and G, are the same graph, i.e. they
are isomorphic

* G, is not. Can you prove it?

N
-

GRAPHS

 Graphs have a sneaky way of appearing
different all the time

* This isn't just true of the graph itself, but it
can also be true of graph problems that
we want to solve

GRAPHS

 Graphs have a sneaky way of appearing
different all the time

* This isn't just true of the graph itself, but it
can also be true of graph problems that
we want to solve

- Makes graph theory incredibly interesting,
but difficult to discuss

NETWORK FLOW

e Determine the maximum flow from a
source vertex to a sink in a graph

NETWORK FLOW

e Determine the maximum flow from a
source vertex to a sink in a graph

« Graph: G(V,E)
e Source vertex, s
« Sink vertex, t

- Each edge’s weight represents the traffic
a particular edge can carry (must be non-
negative)

MAXIMUM FLOW

« Consider breaking graph into two
subgraphs

- G(V,E,) and G(V,E,) where |E,| = |E,|, but
their weights are different
- For each weightin E, E, +E,, = E,

* The first is the flow graph and the
second is the residual graph

MAXIMUM FLOW

« Consider breaking graph into two
subgraphs

- G(V,E,) and G(V,E,) where |E,| = |E,|, but
their weights are different
- For each weightin E, E, +E,, = E,

* The first is the flow graph and the
second is the residual graph

MAXIMUM FLOW

« Consider breaking graph into two
subgraphs

* For the flow graph, except the source and
sink, the weights of all edges in must
equal the weight of edges out

* The residual graph can never have
negative weights

MAXIMUM FLOW

Graph Flow Residual
o €
30N 2
@f _______ 0 .. @
0 ,; } 0:
o RO
20 3

NAIVE ALGORITHM

« Start where the the residual is the graph and the
flow is empty

 While there is a path from s to t in the residual

* Find the minimum edge weight along the path

* For each in the path
Add the minimum weight for each edge in the path to the flow
Subtract the minimum weight for each edge from the residual

EXAMPLE

EXAMPLE

 What went wrong?

EXAMPLE

 What went wrong?

« |f we select paths in the wrong order, we might not get the
correct solution

« This is an example of a greedy-first algorithm
* Need to have an opportunity to back-track

« Well, let's add a reversal (augmenting) edge into the
residual!

FORD-FULKERSON

Algorithm [edit)

Let G(V, E) be a graph, and for each edge from u to v, let ¢(u, v) be the capacity and f(u, v) be the flow. We want to find the maximum flow from the source s to
the sink t. After every step in the algorithm the following is maintained:

Capacity

Y(u,v) € E f(u,v) < c(u,v The flow along an edge can not exceed its capacity.
consiraints: (u,v) € E f(u,v) < c(u,v) g an edg pacity.
Skew symmetry: V(u,v) € E f(u,v) = — f(v,u) The net flow from u to ¥ must be the opposite of the net flow from v to u (see example).
Flow VueV:u#sandu#t= Z f(u, w) =0 That is, unless u is 8 or t. The net flow to a node is zero, except for the source, which
conservation: weV "produces” flow, and the sink, which "consumes" flow.
Value(f): (z): f (s, u) = (z): f (v, t) That is, the flow leaving from 8 must be equal to the flow arriving at ¢.

su)el vt)eE

This means that the flow through the network is a legal flow after each round in the algorithm. We define the residual network G f(V, Ef) to be the network with
capacity ¢f(u,v) = ¢(u,v) — f(u,v) and no flow. Notice that it can happen that a flow from v to u is allowed in the residual network, though disallowed in the
original network: if f(u,v) > 0 and ¢(v,u) = 0 then ¢f(v,u) = c(v,u) — f(v,u) = f(u,v) > 0.
Algorithm Ford-Fulkerson
Inputs Given a Network G = (V, E) with flow capacity ¢, a source node s, and a sink node ¢
Output Compute a flow f from s to ¢ of maximum value
1. f(u,v) + 0 for all edges (u, v)
2. While there is a path p from s to ¢ in G4, such that ¢ (u, v) > 0 for all edges (u,v) € p:
1. Find ¢¢(p) = min{cs(u,v) : (u,v) € p}
2. For each edge (u,v) € p
1. f(u,v) « f(u,v) + c;(p) (Send flow along the path)
2. f(v,u) « f(v,u) — cs(p) (The flow might be “returned" later)

The path in step 2 can be found with for example a breadth-first search or a depth-first search in G f (V, E f). If you use the former, the algorithm is called
Edmonds—Karp.

EXAMPLE

 Oh boy, that got complicated really
quickly

* O(IVIIEP)

EXAMPLE

 Oh boy, that got complicated really
quickly
* O(IVIIE[?)

« Can we solve this problem a different way?

EXAMPLE

 Oh boy, that got complicated really
quickly
* O(IVIIE[?)

« Can we solve this problem a different way?

Max-Flow Min-Cut Theorem

MAX-FLOW MIN-CUT THEOREM (Ford-Fulkerson, 1956): In any
network, the value of the max flow is equal to the value of the min cut.

"Good characterization."

9

9 (5
10 1 9
10 4 0 15 150 10
8 xT/ 10
4 10
6

10

Proof IOU.

o &

Cut capacity =28 Tk Flow value = 28

PROBLEM SYMMETRY

+ Solving max-flow is the same as solving
the min-cut

« What algorithm do we use to solve the min-cut?

FORD-FULKERSON

Algorithm [edit)

Let G(V, E) be a graph, and for each edge from u to v, let ¢(u, v) be the capacity and f(u, v) be the flow. We want to find the maximum flow from the source s to
the sink t. After every step in the algorithm the following is maintained:

Capacity

Y(u,v) € E f(u,v) < c(u,v The flow along an edge can not exceed its capacity.
consiraints: (u,v) € E f(u,v) < c(u,v) g an edg pacity.
Skew symmetry: V(u,v) € E f(u,v) = — f(v,u) The net flow from u to ¥ must be the opposite of the net flow from v to u (see example).
Flow VueV:u#sandu#t= Z f(u, w) =0 That is, unless u is 8 or t. The net flow to a node is zero, except for the source, which
conservation: weV "produces” flow, and the sink, which "consumes" flow.
Value(f): (z): f (s, u) = (z): f (v, t) That is, the flow leaving from 8 must be equal to the flow arriving at ¢.

su)el vt)eE

This means that the flow through the network is a legal flow after each round in the algorithm. We define the residual network G f(V, Ef) to be the network with
capacity ¢f(u,v) = ¢(u,v) — f(u,v) and no flow. Notice that it can happen that a flow from v to u is allowed in the residual network, though disallowed in the
original network: if f(u,v) > 0 and ¢(v,u) = 0 then ¢f(v,u) = c(v,u) — f(v,u) = f(u,v) > 0.
Algorithm Ford-Fulkerson
Inputs Given a Network G = (V, E) with flow capacity ¢, a source node s, and a sink node ¢
Output Compute a flow f from s to ¢ of maximum value
1. f(u,v) + 0 for all edges (u, v)
2. While there is a path p from s to ¢ in G4, such that ¢ (u, v) > 0 for all edges (u,v) € p:
1. Find ¢¢(p) = min{cs(u,v) : (u,v) € p}
2. For each edge (u,v) € p
1. f(u,v) « f(u,v) + c;(p) (Send flow along the path)
2. f(v,u) « f(v,u) — cs(p) (The flow might be “returned" later)

The path in step 2 can be found with for example a breadth-first search or a depth-first search in G f (V, E f). If you use the former, the algorithm is called
Edmonds—Karp.

FORD-FULKERSON

« Bleh. Garbage. Who has the time?

FORD-FULKERSON

« Bleh. Garbage. Who has the time?

« Can we estimate the min-cut?

FORD-FULKERSON

« Bleh. Garbage. Who has the time?
« Can we estimate the min-cut?

* What might be an easy estimator?

FORD-FULKERSON

« Bleh. Garbage. Who has the time?
« Can we estimate the min-cut?

* What might be an easy estimator?

KARGER'S ALGORITHM

« Bleh. Garbage. Who has the time?
« Can we estimate the min-cut?

* What might be an easy estimator?
« Contract edges at random!

* How many edges will you contract to get two
subgraphs?

vl grgvaravdy i3 S 4 S 433

KARGER'S ALGORITHM

« Bleh. Garbage. Who has the time?
« Can we estimate the min-cut?

* What might be an easy estimator?
« Contract edges at random!

* How many edges will you contract to get two
subgraphs?
* Only |V]-2

vl grgvaravdy i3 S 4 S 433

KARGER'S ALGORITHM

 Does this work?

KARGER'S ALGORITHM

 Does this work?

* Success probability of 2/|E]

KARGER'S ALGORITHM

 Does this work?

* Success probability of 2/|E]

* Run it O(E) times, and you have a bounded
success rate!

* O(IVIIE])

REDUCTIONS

 Anytime you can use one algorithm to
solve another, this is called a reduction

REDUCTIONS

 Anytime you can use one algorithm to
solve another, this is called a reduction

« Suppose we have an unweighted graph,
how might we find the max-cut?

REDUCTIONS

 Anytime you can use one algorithm to
solve another, this is called a reduction

« Suppose we have an unweighted graph,
how might we find the max-cut?

- Swap all the edges in the graph and solve
the min-cut!

REDUCTIONS

 Anytime you can use one algorithm to
solve another, this is called a reduction

« What if we wanted to find the graph of
maximum flow that also has minimum
weight?

REDUCTIONS

 Anytime you can use one algorithm to
solve another, this is called a reduction

« What if we wanted to find the graph of
maximum flow that also has minimum
weight?

* This problem is so difficult, no one has
found a way to solve it efficiently

TAKE AWAYS

 We'll talk about approximation and
algorithm design more next week

» Graph problems can get very difficult very quickly
- Many problems are related

* Proving that solving one problem gives a solution
to another is called a reduction

