CSE 373

NOVEMBER 29TH – MINIMUM SPANNING TREES
ASSORTED MINUTIAE

• Project 3
 • Preliminary part 2 grades out
 • Official grades for part 2 and part 1 regrades (with email) by Friday

• Written Assignment
 • Out tonight
 • Sorting and graphs
 • No late days allowed
PROBLEM STATEMENT

Given a connected undirected graph $G=(V,E)$, find a minimal subset of edges such that G is still connected

- A graph $G_2=(V,E_2)$ such that G_2 is connected and removing any edge from E_2 makes G_2 disconnected
OBSERVATIONS

1. Problem not defined if original graph not connected. Therefore, we know $|E| \geq |V|-1$

2. Any solution to this problem is a tree
 - Recall a tree does not need a root; just means acyclic
 - For any cycle, could remove an edge and still be connected

3. A tree with $|V|$ nodes has $|V|-1$ edges
 - So every solution to the spanning tree problem has $|V|-1$ edges
TWO APPROACHES

Different algorithmic approaches to the spanning-tree problem:

1. Do a graph traversal (e.g., depth-first search, but any traversal will do), keeping track of edges that form a tree

2. Iterate through edges; add to output any edge that does not create a cycle
SECOND APPROACH

Iterate through edges; output any edge that does not create a cycle

Correctness (hand-wavy):
 - Goal is to build an acyclic connected graph
 - When we add an edge, it adds a vertex to the tree
 - The graph is connected, so we reach all vertices

Efficiency:
 - Depends on how quickly you can detect cycles
 - Reconsider after the example
EXAMPLE

Edges in some arbitrary order:

\[(1,2), (3,4), (5,6), (5,7),(1,5), (1,6), (2,7), (2,3), (4,5), (4,7)\]

Output:
EXAMPLE

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2)
EXAMPLE

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4)
EXAMPLE

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6),
EXAMPLE

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7)
EXAMPLE

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
EXAMPLE

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
EXAMPLE
Edges in some arbitrary order:
(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5)
EXAMPLE

Edges in some arbitrary order:

(1,2), (3,4), (5,6), (5,7), (1,5), (1,6), (2,7), (2,3), (4,5), (4,7)

Output: (1,2), (3,4), (5,6), (5,7), (1,5), (2,3)

Can stop once we have $|V| - 1$ edges
CYCLE DETECTION

To decide if an edge could form a cycle is $O(|V|)$ because we may need to traverse all edges already in the output.

So overall algorithm would be $O(|V||E|)$.

But there is a faster way: union-find!

- Data structure which stores connected sub-graphs.
- As we add more edges to the spanning tree, those sub-graphs are joined.
WEIGHTED UNION

Weighted union:

- Always point the *smaller* (total # of nodes) tree to the root of the larger tree
WEIGHTED UNION

Weighted union:

- Always point the *smaller* (total # of nodes) tree to the root of the larger tree
- What just happened to the height of the larger tree?
WEIGHTED UNION

Weighted union:

• Like balancing on an AVL tree, we’re trying to keep the traversal from leaf to overall root short
ARRAY IMPLEMENTATION

Keep the weight (number of nodes in a second array). Or have one array of objects with two fields. Could keep track of height, but that’s harder. Weight gives us an approximation.
NIFTY TRICK
Actually we do not need a second array…

• Instead of storing 0 for a root, store negation of weight. So parent value < 0 means a root.
PATH COMPRESSION

Simple idea: As part of a `find`, change each encountered node’s parent to point directly to root

- Faster future `finds` for everything on the path (and their descendants)
SPANNING TREES

Given a *connected* undirected graph $G=(V,E)$, find a subset of edges such that G is still connected

- A graph $G_2=(V,E_2)$ such that G_2 is connected and removing any edge from E_2 makes G_2 disconnected
MINIMAL SPANNING TREES

• How do we get a minimal spanning tree from a traversal?
MINIMAL SPANNING TREES

• How do we get a minimal spanning tree from a traversal?
 • What parts of a traversal can we change?
MINIMAL SPANNING TREES

• How do we get a minimal spanning tree from a traversal?
 • What parts of a traversal can we change?
 • Select which vertex we visit next by which is closest to an old vertex
PRIM’S ALGORITHM

• A traversal
PRIM’S ALGORITHM

• A traversal
 • Pick a start node
PRIM’S ALGORITHM

• A traversal
 • Pick a start node
 • Keep track of all of the vertices you can reach
PRIM’S ALGORITHM

• A traversal
 • Pick a start node
 • Keep track of all of the vertices you can reach
 • Add the vertex that is closest (has the edge with smallest weight) to the current spanning tree.
PRIM’S ALGORITHM

• A traversal
 • Pick a start node
 • Keep track of all of the vertices you can reach
 • Add the vertex that is closest (has the edge with smallest weight) to the current spanning tree.

• Is this similar to something we’ve seen before?
PRIM’S ALGORITHM

- Modify Dijkstra’s algorithm
PRIM’S ALGORITHM

• Modify Dijkstra’s algorithm
 • Instead of measuring the total length from start to the new vertex, now we only care about the edge from our current spanning tree to new nodes
THE ALGORITHM

1. For each node \(v \), set \(v\text{.cost} = \infty \) and \(v\text{.known} = \text{false} \)

2. Choose any node \(v \)
 a) Mark \(v \) as known
 b) For each edge \((v,u) \) with weight \(w \), set \(u\text{.cost}=w \) and \(u\text{.prev}=v \)

3. While there are unknown nodes in the graph
 a) Select the unknown node \(v \) with lowest cost
 b) Mark \(v \) as known and add \((v, v\text{.prev}) \) to output
 c) For each edge \((v,u) \) with weight \(w \),

 \[
 \text{if}(w < u\text{.cost}) \{
 \begin{align*}
 \quad & u\text{.cost} = w; \\
 \quad & u\text{.prev} = v;
 \end{align*}
 \}
 \]
EXAMPLE

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>∞</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
vertex | known? | cost | prev
---|---|---|---
A | Y | 0 |
B | | 2 | A
C | | 2 | A
D | | 1 | A
E | | ∞ |
F | | ∞ |
G | | ∞ |

A vertex known? cost prev
--- ---- ----
A Y 0 A
B 2 A
C 1 D
D Y 1 A
E 1 D
F 6 D
G 5 D
null
A B C D E F G

0 1 1 1 1 1 3
2 1 5 5 3 2 3

2 6 10

vertex	known?	cost	prev
A | Y | 0 | |
B | | 1 | E |
C | Y | 1 | D |
D | Y | 1 | A |
E | Y | 1 | D |
F | | 2 | C |
G | | 3 | E |
vertex | known? | cost | prev
--- | --- | --- | ---
A | Y | 0 |
B | Y | 1 | E
C | Y | 1 | D
D | Y | 1 | A
E | Y | 1 | D
F | Y | 2 | C
G | | 3 | E
The image shows a graph with labeled vertices and edges, along with a table representing the known status, cost, and previous vertex for each vertex.

Vertex Table:

<table>
<thead>
<tr>
<th>vertex</th>
<th>known?</th>
<th>cost</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Y</td>
<td>1</td>
<td>E</td>
</tr>
<tr>
<td>C</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Y</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td>Y</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>F</td>
<td>Y</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>G</td>
<td>Y</td>
<td>3</td>
<td>E</td>
</tr>
</tbody>
</table>
PRIM’S ALGORITHM

• Does this give us the correct solution? Why?
PRIM’S ALGORITHM

• Does this give us the correct solution? Why?
 • If we consider the “known” cloud as a single vertex, we will never add edges that form a cycle
PRIM’S ALGORITHM

• Does this give us the correct solution? Why?
 • If we consider the “known” cloud as a single vertex, we will never add edges that form a cycle
 • Each time, we take the edge that has minimal weight going out of the vertex.
PRIM’S ALGORITHM

• Does this give us the correct solution? Why?
 • If we consider the “known” cloud as a single vertex, we will never add edges that form a cycle
 • Each time, we take the edge that has minimal weight going out of the vertex.
 • This is the cheapest way of connecting the two subgraphs.
PRIM’S ALGORITHM

• What is the runtime?
PRIM’S ALGORITHM

• What is the runtime?
 • Traversals go through all of the edges, in the worst case
PRIM’S ALGORITHM

• What is the runtime?
 • Traversals go through all of the edges, in the worst case
 • Need to check if an edge forms a cycle or if it has minimal weight.
PRIM’S ALGORITHM

• What is the runtime?
 • Traversals go through all of the edges, in the worst case
 • Need to check if an edge forms a cycle or if it has minimal weight.
 • We can check if it forms a cycle by verifying if the other vertex is in the “known cloud”
PRIM’S ALGORITHM

• What is the runtime?
 • Traversals go through all of the edges, in the worst case
 • Need to check if an edge forms a cycle or if it has minimal weight.
 • We can check if it forms a cycle by verifying if the other vertex is in the “known cloud” $O(1)$
PRIM’S ALGORITHM

• What is the runtime?
 • Traversals go through all of the edges, in the worst case
 • Need to check if an edge forms a cycle or if it has minimal weight.
 • We can check if it forms a cycle by verifying if the other vertex is in the “known cloud” \(O(1) \)
 • How long to check if it is minimal?
PRIM’S ALGORITHM

- What is the runtime?
 - Traversals go through all of the edges, in the worst case
 - Need to check if an edge forms a cycle or if it has minimal weight.
 - We can check if it forms a cycle by verifying if the other vertex is in the “known cloud” $O(1)$
 - How long to check if it is minimal? $O(\log |V|)$ if we use a priority queue
PRIM’S ALGORITHM

- $O(|E| \log |V|)$
 - We can use a priority queue to store all of our vertices, and let the edges to them be the priority.
PRIM’S ALGORITHM

- $O(|E| \log |V|)$
 - We can use a priority queue to store all of our vertices, and let the edges to them be the priority.
 - Use the decreaseKey() function when the edge to a vertex changes.
PRIM’S ALGORITHM

- $O(|E| \log |V|)$
 - We can use a priority queue to store all of our vertices, and let the edges to them be the priority.
 - Use the decreaseKey() function when the edge to a vertex changes.
 - Without the priority queue, both Prim’s and Dijkstra’s run in $O(|E||V|)$
KRUSKAL’S ALGORITHM

• Prim’s algorithm works from the vertices, and builds a contiguous spanning tree
KRUSKAL’S ALGORITHM

• Prim’s algorithm works from the vertices, and builds a contiguous spanning tree
 • The spanning tree grows out from a single vertex
KRUSKAL’S ALGORITHM

• Prim’s algorithm works from the vertices, and builds a contiguous spanning tree
 • The spanning tree grows out from a single vertex
• Kruskal’s Algorithm adds edges based on their weight
KRUSKAL’S ALGORITHM

- Prim’s algorithm works from the vertices, and builds a contiguous spanning tree
 - The spanning tree grows out from a single vertex
- Kruskal’s Algorithm adds edges based on their weight
 - Must check for cycles
KRUSKAL’S ALGORITHM

- Prim’s algorithm works from the vertices, and builds a contiguous spanning tree
 - The spanning tree grows out from a single vertex
- Kruskal’s Algorithm adds edges based on their weight
 - Must check for cycles
 - Use the union-find data structure to speed up this operation
KRUSKAL’S ALGORITHM

• Pseudocode:
KRUSKAL’S ALGORITHM

• **Pseudocode:**
 - Sort the edges (or place them into a heap)
 - Create a union-find data structure with all separate vertices
KRUSKAL'S ALGORITHM

• Pseudocode:
 • Sort the edges (or place them into a heap)
 • Create a union-find data structure with all separate vertices
 • For each edge, add it to the minimum spanning tree if it does not form a cycle
KRUSKAL’S ALGORITHM

• Pseudocode:
 • Sort the edges (or place them into a heap)
 • Create a union-find data structure with all separate vertices
 • For each edge, add it to the minimum spanning tree if the two vertices don’t have the same representative in the union find
KRUSKAL’S ALGORITHM

• **Pseudocode:**
 • Sort the edges (or place them into a heap)
 • Create a union-find data structure with all separate vertices
 • For each edge, add it to the minimum spanning tree if the two vertices don’t have the same representative in the union find
 • Union the two vertices in the union find
KRUSKAL’S ALGORITHM

• **Pseudocode:**

 • Sort the edges (or place them into a heap)
 • Create a union-find data structure with all separate vertices
 • For each edge, add it to the minimum spanning tree if the two vertices don’t have the same representative in the union find
 • Union the two vertices in the union find
 • Stop after you’ve added |V|-1 edges
Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output:

Note: At each step, the union/find sets are the trees in the forest
Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D)

Note: At each step, the union/find sets are the trees in the forest
Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D)

Note: At each step, the union/find sets are the trees in the forest
Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E)

Note: At each step, the union/find sets are the trees in the forest
Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest.
Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E)

Note: At each step, the union/find sets are the trees in the forest
Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest
EXAMPLE

Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F)

Note: At each step, the union/find sets are the trees in the forest
Edges in sorted order:
1: (A,D), (C,D), (B,E), (D,E)
2: (A,B), (C,F), (A,C)
3: (E,G)
5: (D,G), (B,D)
6: (D,F)
10: (F,G)

Output: (A,D), (C,D), (B,E), (D,E), (C,F), (E,G)

Note: At each step, the union/find sets are the trees in the forest
KRUSKAL’S ALGORITHM

• Runtime
KRUSKAL’S ALGORITHM

• Runtime
 • Put edges into a heap
KRUSKAL’S ALGORITHM

• Runtime
 • Put edges into a heap $O(|E|)$ Floyd’s method!
KRUSKAL’S ALGORITHM

- **Runtime**
 - Put edges into a heap $O(|E|)$ Floyd’s method!
 - Until the MST is complete:
KRUSKAL’S ALGORITHM

• Runtime
 • Put edges into a heap $O(|E|)$ Floyd’s method!
 • Until the MST is complete:
 • Pull the minimum edge out of the heap
KRUSKAL’S ALGORITHM

• Runtime
 • Put edges into a heap $O(|E|)$ Floyd’s method!
 • Until the MST is complete:
 • Pull the minimum edge out of the heap $O(\log |E|)$
KRUSKAL’S ALGORITHM

• Runtime
 • Put edges into a heap $O(|E|)$ Floyd’s method!
 • Until the MST is complete:
 • Pull the minimum edge out of the heap $O(\log |E|)$
 • Check if it forms a cycle
KRUSKAL’S ALGORITHM

• Runtime
 • Put edges into a heap $O(|E|)$ Floyd’s method!
 • Until the MST is complete:
 • Pull the minimum edge out of the heap $O(\log |E|)$
 • Check if it forms a cycle $O(\log |V|)$
KRUSKAL’S ALGORITHM

• Runtime
 • Put edges into a heap $O(|E|)$ Floyd’s method!
 • Until the MST is complete:
 • Pull the minimum edge out of the heap $O(\log |E|)$
 • Check if it forms a cycle $O(\log |V|)$
KRUSKAL’S ALGORITHM

• Runtime
 • Put edges into a heap $O(|E|)$ Floyd’s method!
 • Until the MST is complete:
 • Pull the minimum edge out of the heap $O(\log |E|)$
 • Check if it forms a cycle $O(\log |V|)$
 • How many times does the loop run?
KRUSKAL’S ALGORITHM

• Runtime
 • Put edges into a heap $O(|E|)$ Floyd’s method!
 • Until the MST is complete:
 • Pull the minimum edge out of the heap $O(\log |E|)$
 • Check if it forms a cycle $O(\log |V|)$
 • How many times does the loop run? $O(E)$
KRUSKAL’S ALGORITHM

• Runtime
 • Put edges into a heap $O(|E|)$ Floyd’s method!
 • Until the MST is complete:
 • Pull the minimum edge out of the heap $O(\log |E|)$
 • Check if it forms a cycle $O(\log |V|)$
 • How many times does the loop run? $O(E)$
 • $O(|E| \log |E|)$
COMPARISONS

• Prim’s
 • $O(|E| \log |V|)$

• Kruskal’s
 • $O(|E| \log |E|)$

• Since $|E|$ must be at least $|V|-1$ for the graph to be connected, which do we prefer?
COMPARISONS

• Prim’s
 • $O(|E| \log |V|)$

• Kruskal’s
 • $O(|E| \log |E|)$

• Since $|E|$ must be at least $|V|-1$ for the graph to be connected, which do we prefer?
 • Since $|E|$ is at most $|V|^2$, $\log|E|$ is at most $\log(|V|^2)$ which is $2\log|V|$.
COMPARISONS

• Prim’s
 • $O(|E| \log |V|)$

• Kruskal’s
 • $O(|E| \log |E|)$

• Since $|E|$ must be at least $|V|-1$ for the graph to be connected, which do we prefer?
 • Since $|E|$ is at most $|V|^2$, $\log|E|$ is at most $\log(|V|^2)$ which is $2\log|V|$.
 • So $\log|E|$ is $O(\log|V|)$
CONCLUSIONS

• Prim’s and Kruskal’s both run in $O(|E| \log |V|)$
CONCLUSIONS

• Prim’s and Kruskal’s both run in $O(|E| \log |V|)$

• An undirected graph has a unique minimum spanning tree if all of its edge weights are unique.
CONCLUSIONS

• Prim’s and Kruskal’s both run in $O(|E| \log |V|)$

• An undirected graph has a unique minimum spanning tree if all of its edge weights are unique.

• If graphs have multiple edges of the same weight, it is possible (but not necessary) that there are many spanning trees of the same weight.
CONCLUSIONS

• Prim’s and Kruskal’s both run in \(\mathcal{O}(|E| \log |V|) \)

• An undirected graph has a unique minimum spanning tree if all of its edge weights are unique.

• If graphs have multiple edges of the same weight, it is possible (but not necessary) that there are many spanning trees of the same weight.