CSE 373

NOVEMBER 20TH - TOPOLOGICAL SORT

PROJECT 3

- 500 Internal Error problems
 - Hopefully all resolved (or close to)
- P3P1 grades are up (but muted)
 - Leave canvas comment
 - Emails tomorrow
- End of quarter

- A graph is composed of two things
 - A set of vertices
 - A set of edges (which are ordered vertex tuples)
- Trees are types of graphs
 - Each of the nodes is a vertex
 - Each pointer from parent to child is an edge
- Represented as G(V,E) to indicate that V is the set of vertices and E is the set of edges

- Graphs are not an ADT
 - There is no "functions" that a graph supports
 - Rather, graphs are a theoretical framework for understanding certain types of problems.
 - Travelling salesman, path finding, resource allocating

ANALYZING GRAPHS

- In graphs, there are two important variables, |V| and |E|
 - Our analysis can now have two inputs
 - Before, our input size was n, now we use |V| and |E|
 - What is the maximum size of |E|? O(|V|²)
 - For any vertices a,b, there can exist at most one edge (a,b)
 - A can equal B (this is a self loop)
 - There can be (b,a) -- directed

Paths and Cycles

- A path: a set of edges connecting two vertices where all of the edges are connected and neither edges nor vertices are repeated
- A cycle: a path that starts and ends on the same

- Paths and cycles can not have repeated vertices or edges
 - A path that can repeat vertices or edges is called a walk
 - A path that can repeat vertices but not edges is called a trail
 - A circuit is a trail that starts and ends at the same vertex

- Graphs can be either directed or undirected
 - Undirected graph, if (A,B) is in the set of edges, (B,A) must be in the set of edges
 - Directed graphs, both can be in the set of edges, but those graphs have different connectivity
- We call a graph connected if there is a path between every pair of vertices

- Edges can have weights
 - This becomes important when we consider path finding algorithms
 - Usually, we consider the weights to be the some attribute pertaining to the edge
 - Each edge has exactly one weight

- When we consider graphs, we determine them to be either dense or sparse
 - Dense graphs are very connected, each vertex is connected to a fraction of the total vertices
 - Sparse graphs are less connected and can be more clustered, each vertex is connected to some constant number of vertices

- When graphs are small, it is difficult to distinguish between the two
 - If we represent Facebook as a graph, where users are vertices and "friendships" are edges, what can we say about the graph?
 - Directed?
 - Connected?
 - Cyclic?
 - Sparse/Dense?

- When graphs are small, it is difficult to distinguish between the two
 - If we represent Facebook as a graph, where users are vertices and "friendships" are edges, what can we say about the graph?
 - Directed? No, (A,B) means (B,A)
 - Connected? Maybe not!
 - Cyclic? Yes, mutual friends
 - Sparse/Dense? Sparse! 338 average!

- This "value" is called the degree of the vertex
 - If you have 338 friends, then that vertex has degree 338.
- In directed graph, we separate this into in-degree and out-degree
 - Consider Twitter, where friendship isn't symmetric. The number of followers you have is your in-degree and the number of people you follow is your out degree

REPRESENTATION

- How do we represent graphs on a computer?
 - Two main approaches

REPRESENTATION

- How do we represent graphs on a computer?
 - Two main approaches
 - Adjacency List
 - Adjacency Matrix

ADJACENCY LIST

- If (u,v) is an edge, then we say v is adjacent to u.
- If we want to store these edges then,
 - For each vertex, we maintain a list of all edges coming out of that vertex
- The number of elements coming out of the vertex is called the *out-degree*
- The number of elements coming into the vertex is the *in-degree*

ADJACENCY MATRIX

- Imagine a two dimensional |V| x |V| matrix.
- Let the rows be source vertices, and let the rows be destination vertices
 - If the edge (u,v) is in the graph, then matrix[u][v] is set to true
 - Alternatively, we can set matrix[u][v] to be the weight of the edge

ADJACENCY MATRIX

- Imagine a two dimensional |V| x |V| matrix.
- Let the rows be source vertices, and let the rows be destination vertices
 - If the edge (u,v) is in the graph, then matrix[u][v] is set to true
 - Alternatively, we can set matrix[u][v] to be the weight of the edge
- What is the memory consumption?
 - O(|V|²), but it implicitly stores in and out vertices
 - If the graph is dense, then this is more efficient

TERMINOLOGY

Know the following terms

- Vertices and Edges
- Directed v. Undirected
- In-degree and out-degree
- Connected (Strongly connected)
- Weighted v. unweighted
- Cyclic v. acyclic
- DAG: Directed Acyclic Graph

- Since graphs are abstractions similar to trees, we can also perform traversals.
 - If a graph is connected, i.e. there is a path between all pairs of vertices, then a traversal can output all nodes if you do it cleverly

- Depth-first search (prev graph with (D,G) added to make it connected
 - Traverse the tree with DFS, if there are multiple nodes to choose from, go alphabetically. Start at A.

Output: A

Current Node: A

Out-vertices: B, D, E

Output: A,B

Current Node: B

Out-vertices: D

Output: A,B, D

Current Node: D

Out-vertices: A,G

Output: A,B, D, A

Current Node: A

Out-vertices: B,D,E

Output: A,B, D, A

Oh, no! We have repeated output!

Current Node: A

Out-vertices: B,D,E

- Depth first search needs to check which nodes have been output or else it can get stuck in loops.
 - This increases the runtime and memory constraints of the traversal
- In a connected graph, a BFS will print all nodes, but it will repeat if there are cycles and may not terminate

 As an aside, in-order, pre-order and postorder traversals only make sense in binary trees, so they aren't important for graphs. However, we do need some way to order our out-vertices (left and right in BST).

- For an arbitrary graph and starting node v, find all nodes reachable from v.
 - There exists a path from v
 - Doing something or "processing" each node
 - Determines if an undirected graph is connected?
 If a traversal goes through all vertices, then it is connected
- Basic idea
 - Traverse through the nodes like a tree
 - Mark the nodes as visited to prevent cycles and from processing the same node twice

ABSTRACT IDEA IN PSEUDOCODE

```
void traverseGraph(Node start) {
     Set pending = emptySet()
     pending.add(start)
     mark start as visited
     while(pending is not empty) {
       next = pending.remove()
       for each node u adjacent to next
          if (u is not marked visited) {
             mark u
             pending.add(u)
```

RUNTIME AND OPTIONS

- Assuming we can add and remove from our "pending" DS in O(1) time, the entire traversal is O(|E|)
- Our traversal order depends on what we use for our pending DS.

Stack : DFS

Queue: BFS

 These are the main traversal techniques in CS, but there are others!

COMPARISON

Breadth-first always finds shortest length paths, i.e., "optimal solutions"

Better for "what is the shortest path from x to y"

But depth-first can use less space in finding a path

- If longest path in the graph is p and highest out-degree is d then DFS stack never has more than d*p elements
- But a queue for BFS may hold O(|V|) nodes

A third approach (useful in Artificial Intelligence)

- Iterative deepening (IDFS):
 - Try DFS but disallow recursion more than κ levels deep
 - If that fails, increment k and start the entire search over
- Like BFS, finds shortest paths. Like DFS, less space.

TOPOLOGICAL SORT

PAGE 3			
DEPARTMENT	COURSE	DESCRIPTION	PREREQS
COMPUTER SCIENCE	CPSC 432	INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.	CPSC 432
00.	0000 1100	Water Colonies Draight	0.17

TOPOLOGICAL SORT

It's never too late to start your xkcd addiction

- Topological ordering
 - One final ordering for graphs
 - Ordering with a focus on dependency resolutions
- Example, consider a graph where courses are vertices and prerequisites are edges.
- A topological ordering is any valid class order

Problem: Given a DAG G=(V,E), output all vertices in an order such that no vertex appears before another vertex that has an edge to it

One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

QUESTIONS AND COMMENTS

Why do we perform topological sorts only on DAGs?

Because a cycle means there is no correct answer

Is there always a unique answer?

No, there can be 1 or more answers; depends on the graph

Graph with 5 topological orders:

Do some DAGs have exactly 1 answer?

Yes, including all lists

Terminology: A DAG represents a partial order and a topological sort produces a total order that is consistent with it

USES OF TOPOLOGICAL SORT

Figuring out how to graduate

Computing an order in which to recompute cells in a spreadsheet

Determining an order to compile files using a Makefile

In general, taking a dependency graph and finding an order of execution

. . .

1. Label ("mark") each vertex with its in-degree

- Think "write in a field in the vertex"
- Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:

- a) Choose a vertex **v** with labeled with in-degree of 0
- b) Output **v** and *conceptually* remove it from the graph
- c) For each vertex **u** adjacent to **v** (i.e. **u** such that (**v**,**u**) in **E**), decrement the in-degree of **u**

Output:

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed?

In-degree: 0 0 2 1 1 1 1 1 3

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x

In-degree: 0 0 2 1 1 1 1 1 3

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? $x \times x$

In-degree: 0 0 2 1 1 1 1 1 3 1 3

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x In-degree: 0 0 2 1 1 1 1 1 3 1 3 0 0

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? Χ Χ Χ Χ In-degree:

413

XYZ

SE373: Data

415

NOTICE

Needed a vertex with in-degree 0 to start

Will always have at least 1 because no cycles

Ties among vertices with in-degrees of 0 can be broken arbitrarily

 Can be more than one correct answer, by definition, depending on the graph

IMPLEMENTATION

The trick is to avoid searching for a zero-degree node every time!

- Keep the "pending" zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both O(1)

Using a queue:

- 1. Label each vertex with its in-degree, enqueue 0-degree nodes
- 2. While queue is not empty
 - a) v = dequeue()
 - b) Output **v** and remove it from the graph
 - c) For each vertex **u** adjacent to **v** (i.e. **u** such that (**v**,**u**) in **E**), decrement the in-degree of **u**, if new degree is 0, enqueue it

TRAVERSAL

Start with the nodes that have in-degree 0 (no prereqs)

Then eliminate that vertex (print it out) and eliminate its out edges.

TRAVERSAL

What is a valid topological sort of this graph?

TRAVERSAL

What is a valid topological sort of this graph?

F,C,G,D,A,E,B

F,G,D,C,A,E,B

F,G,C,D,A,E,B

Are these all the valid solutions?

What use does this traversal have?

- What use does this traversal have?
 - Good for dependency resolution

- What use does this traversal have?
 - Good for dependency resolution
 - Can also be used for cycle detection

- What use does this traversal have?
 - Good for dependency resolution
 - Can also be used for cycle detection
- How could we find cycles in an undirected graph?

- What use does this traversal have?
 - Good for dependency resolution
 - Can also be used for cycle detection
- How could we find cycles in an undirected graph?
 - Any traversal that visits a node more than once has a cycle.

 When thinking about graphs, it is important to understand what the graph represents

- When thinking about graphs, it is important to understand what the graph represents
 - Topological sort:

- When thinking about graphs, it is important to understand what the graph represents
 - Topological sort:
 - Programs and dependencies
 - Courses and prereqs

- When thinking about graphs, it is important to understand what the graph represents
 - Topological sort:
 - Programs and dependencies
 - Courses and prereqs
 - What the vertices and edges are impact what the "solution" is

 What type of problem could we want to solve with a graph of US cities and the freeway distance between them

- What type of problem could we want to solve with a graph of US cities and the freeway distance between them
 - Same as a lot of network problems

- What type of problem could we want to solve with a graph of US cities and the freeway distance between them
 - Same as a lot of network problems
 - "Traffic" networks

- What type of problem could we want to solve with a graph of US cities and the freeway distance between them
 - Same as a lot of network problems
 - "Traffic" networks
 - What do our edges represent?

 Given an undirected, unweighted graph G(V,E) and a start vertex A, find the shortest path to all connected vertices

- Given an undirected, unweighted graph G(V,E) and a start vertex A, find the shortest path to all connected vertices
 - If a graph is unweighted you can treat all of their weights as 1

- Given an undirected, unweighted graph G(V,E) and a start vertex A, find the shortest path to all connected vertices
 - If a graph is unweighted you can treat all of their weights as 1
 - Do a BFS traversal of the tree and keep track of paths!

- Given an undirected, unweighted graph G(V,E) and a start vertex A, find the shortest path to all connected vertices
 - If a graph is unweighted you can treat all of their weights as 1
 - Do a BFS traversal of the tree and keep track of paths!
 - Path-keeping is non-trivial, we'll talk about it on Wednesday

- Given an undirected, unweighted graph G(V,E) and a start vertex A, find the shortest path to all connected vertices
 - If a graph is unweighted you can treat all of their weights as 1
 - Do a BFS traversal of the tree and keep track of paths!
 - Path-keeping is non-trivial, we'll talk about it on Wednesday
 - What if the graph has weights?

PATH-FINDING

Why BFS won't work: Shortest path may not have the fewest edges

Annoying when this happens with costs of flights

We will assume there are no negative weights

- Problem is ill-defined if there are negative-cost cycles
- Wednesday's algorithm is wrong if edges can be negative
 - There are other, slower (but not terrible) algorithms

NEXT CLASS

Dijkstra's algorithm

NEXT CLASS

- Dijkstra's algorithm
- P3 checkpoint 2