CSE 373

NOVEMBER 20TH – TOPOLOGICAL SORT
PROJECT 3

• 500 Internal Error problems
 • Hopefully all resolved (or close to)
• P3P1 grades are up (but muted)
 • Leave canvas comment
 • Emails tomorrow
• End of quarter
GRAPH

- A graph is composed of two things
 - A set of vertices
 - A set of edges (which are ordered vertex tuples)
- Trees are types of graphs
 - Each of the nodes is a vertex
 - Each pointer from parent to child is an edge
- Represented as $G(V,E)$ to indicate that V is the set of vertices and E is the set of edges
GRAPHS

• Graphs are not an ADT
 • There is no “functions” that a graph supports
 • Rather, graphs are a theoretical framework for understanding certain types of problems.
 • Travelling salesman, path finding, resource allocating
ANALYZING GRAPHS

• In graphs, there are two important variables, $|V|$ and $|E|$
 - Our analysis can now have two inputs
 - Before, our input size was n, now we use $|V|$ and $|E|$
 - What is the maximum size of $|E|$? $O(|V|^2)$
 - For any vertices a,b, there can exist at most one edge (a,b)
 - A can equal B (this is a self loop)
 - There can be (b,a) -- directed
GRAPHES

• Paths and Cycles
 • A path: a set of edges connecting two vertices where all of the edges are connected and neither edges nor vertices are repeated
 • A cycle: a path that starts and ends on the same
Paths and cycles can not have repeated vertices or edges.

- A path that can repeat vertices or edges is called a walk.
- A path that can repeat vertices but not edges is called a trail.
- A circuit is a trail that starts and ends at the same vertex.
• Graphs can be either directed or undirected
 • Undirected graph, if (A,B) is in the set of edges, (B,A) must be in the set of edges
 • Directed graphs, both can be in the set of edges, but those graphs have different connectivity
• We call a graph connected if there is a path between every pair of vertices
GRAPHS

• Edges can have weights
 • This becomes important when we consider path finding algorithms
 • Usually, we consider the weights to be the some attribute pertaining to the edge
 • Each edge has exactly one weight
GRAPHS

- When we consider graphs, we determine them to be either dense or sparse
 - Dense graphs are very connected, each vertex is connected to a fraction of the total vertices
 - Sparse graphs are less connected and can be more clustered, each vertex is connected to some constant number of vertices
GRAPHS

• When graphs are small, it is difficult to distinguish between the two
 • If we represent Facebook as a graph, where users are vertices and “friendships” are edges, what can we say about the graph?
 • Directed?
 • Connected?
 • Cyclic?
 • Sparse/Dense?
Graphs

- When graphs are small, it is difficult to distinguish between the two
 - If we represent Facebook as a graph, where users are vertices and “friendships” are edges, what can we say about the graph?
 - Directed? No, (A,B) means (B,A)
 - Connected? Maybe not!
 - Cyclic? Yes, mutual friends
 - Sparse/Dense? Sparse! 338 average!
GRAPHS

• This “value” is called the degree of the vertex
 • If you have 338 friends, then that vertex has degree 338.
• In directed graph, we separate this into in-degree and out-degree
 • Consider Twitter, where friendship isn’t symmetric. The number of followers you have is your in-degree and the number of people you follow is your out degree
REPRESENTATION

• How do we represent graphs on a computer?
 • Two main approaches
How do we represent graphs on a computer?

Two main approaches

- Adjacency List
- Adjacency Matrix
ADJACENCY LIST

• If \((u, v)\) is an edge, then we say \(v\) is adjacent to \(u\).

• If we want to store these edges then,
 • For each vertex, we maintain a list of all edges coming out of that vertex
 • The number of elements coming out of the vertex is called the out-degree

• The number of elements coming into the vertex is the in-degree
ADJACENCY MATRIX

• Imagine a two dimensional \(|V| \times |V|\) matrix.

• Let the rows be source vertices, and let the rows be destination vertices

 • If the edge \((u,v)\) is in the graph, then \(\text{matrix}[u][v]\) is set to true

 • Alternatively, we can set \(\text{matrix}[u][v]\) to be the weight of the edge
ADJACENCY MATRIX

- Imagine a two dimensional $|V| \times |V|$ matrix.
- Let the rows be source vertices, and let the rows be destination vertices
 - If the edge (u,v) is in the graph, then matrix$[u][v]$ is set to true
 - Alternatively, we can set matrix$[u][v]$ to be the weight of the edge
- What is the memory consumption?
 - $O(|V|^2)$, but it implicitly stores in and out vertices
 - If the graph is dense, then this is more efficient
TERMINOLOGY

• Know the following terms
 • Vertices and Edges
 • Directed v. Undirected
 • In-degree and out-degree
 • Connected (Strongly connected)
 • Weighted v. unweighted
 • Cyclic v. acyclic
 • DAG: Directed Acyclic Graph
TRAVERSALS

• Since graphs are abstractions similar to trees, we can also perform traversals.
 • If a graph is connected, i.e. there is a path between all pairs of vertices, then a traversal can output all nodes if you do it cleverly
• Depth-first search (prev graph with (D,G) added to make it connected
 • Traverse the tree with DFS, if there are multiple nodes to choose from, go alphabetically. Start at A.
Output: A
Current Node: A
Out-vertices: B, D, E
Output: A,B
Current Node: B
Out-vertices: D
Output: A, B, D
Current Node: D
Out-vertices: A, G
Output: A, B, D, A
Current Node: A
Out-vertices: B, D, E
Output: A, B, D, A
Current Node: A
Out-vertices: B, D, E

Oh, no! We have repeated output!
TRAVERSAL

• Depth first search needs to check which nodes have been output or else it can get stuck in loops.
 • This increases the runtime and memory constraints of the traversal
• In a connected graph, a BFS will print all nodes, but it will repeat if there are cycles and may not terminate
TRAVERSAL

• As an aside, in-order, pre-order and post-order traversals only make sense in binary trees, so they aren’t important for graphs. However, we do need some way to order our out-vertices (left and right in BST).
TRAVERSALS

• For an arbitrary graph and starting node v, find all nodes *reachable* from v.
 • There exists a path from v
 • Doing something or “processing” each node
 • Determines if an undirected graph is connected? If a traversal goes through all vertices, then it is connected

• Basic idea
 • Traverse through the nodes like a tree
 • Mark the nodes as visited to prevent cycles and from processing the same node twice
void traverseGraph(Node start) {
 Set pending = emptySet()
 pending.add(start)
 mark start as visited
 while (pending is not empty) {
 next = pending.remove()
 for each node u adjacent to next
 if (u is not marked visited) {
 mark u
 pending.add(u)
 }
 }
}
RUNTIME AND OPTIONS

• Assuming we can add and remove from our “pending” DS in $O(1)$ time, the entire traversal is $O(|E|)$

• Our traversal order depends on what we use for our pending DS.
 • Stack: DFS
 • Queue: BFS

• These are the main traversal techniques in CS, but there are others!
COMPARISON

Breadth-first always finds shortest length paths, i.e., “optimal solutions”

• Better for “what is the shortest path from \(x \) to \(y \)”

But depth-first can use less space in finding a path

• If longest path in the graph is \(p \) and highest out-degree is \(d \) then DFS stack never has more than \(d \times p \) elements
• But a queue for BFS may hold \(O(|V|) \) nodes

A third approach (useful in Artificial Intelligence)

• Iterative deepening (IDFS):
 • Try DFS but disallow recursion more than \(k \) levels deep
 • If that fails, increment \(k \) and start the entire search over
• Like BFS, finds shortest paths. Like DFS, less space.
<table>
<thead>
<tr>
<th>DEPARTMENT</th>
<th>COURSE</th>
<th>DESCRIPTION</th>
<th>PREREQ'S</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER SCIENCE</td>
<td>CPSC 432</td>
<td>INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.</td>
<td>CPSC 432</td>
</tr>
</tbody>
</table>
TOPOLOGICAL SORT

<table>
<thead>
<tr>
<th>DEPARTMENT</th>
<th>COURSE</th>
<th>DESCRIPTION</th>
<th>PREREQS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER SCIENCE</td>
<td>CPSC 432</td>
<td>INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.</td>
<td>CPSC 432</td>
</tr>
</tbody>
</table>

- It’s never too late to start your xkcd addiction
TOPOLOGICAL SORT

• Topological ordering
 • One final ordering for graphs
 • Ordering with a focus on dependency resolutions

• Example, consider a graph where courses are vertices and prerequisites are edges.

• A topological ordering is any valid class order
TOPOLOGICAL SORT

Problem: Given a DAG $G=(V,E)$, output all vertices in an order such that no vertex appears before another vertex that has an edge to it.

Example input:

One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415
QUESTIONS AND COMMENTS

Why do we perform topological sorts only on DAGs?
 • Because a cycle means there is no correct answer

Is there always a unique answer?
 • No, there can be 1 or more answers; depends on the graph
 • Graph with 5 topological orders:

Do some DAGs have exactly 1 answer?
 • Yes, including all lists

Terminology: A DAG represents a **partial order** and a topological sort produces a **total order** that is consistent with it.
USES OF TOPOLOGICAL SORT

Figuring out how to graduate

Computing an order in which to recompute cells in a spreadsheet

Determining an order to compile files using a Makefile

In general, taking a dependency graph and finding an order of execution

…
TOPOLOGICAL SORT

1. Label (“mark”) each vertex with its in-degree
 - Think “write in a field in the vertex”
 - Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:
 a) Choose a vertex v with labeled with in-degree of 0
 b) Output v and conceptually remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that (v,u) in E), decrement the in-degree of u
Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?
In-degree: 0 0 2 1 1 1 1 1 1 3
Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x
In-degree: 0 0 2 1 1 1 1 1 1 3

Output: 126
EXAMPLE

```
CSE 142 → CSE 143 → CSE 373 → CSE 374 → XYZ
MATH 126

Node: 126 142 143 374 373 410 413 415 417 X

Removed?  x  x

In-degree: 0 0 2 1 1 1 1 1 1 3
```

Output:

```
126
142
```
Example

Output:
126
142
143

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x

In-degree: 0 0 2 1 1 1 1 1 1 1 3
CSE373: Data Structures

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x
In-degree: 0 0 2 1 1 1 1 1 1 1 3
 1 0 0
 0
 0

CSE 374
CSE 410
CSE 413
CSE 415
CSE 417
XYZ

Output:
126
142
143
374
EXAMPLE

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x x x x

In-degree: 0 0 2 1 1 1 1 1 1 3

Output: 126 142 143 374 373

CSE 142 → CSE 143 → CSE 374 → CSE 410 → XYZ
CSE 413 → CSE 373 → CSE 415 → CSE 417
MATH 126

CSE 373: Data Structures

CSE 417: Algorithms
EXAMPLE

Output:
126
142
143
374
373
417

Node:
126 142 143 374 373 410 413 415 417 XYZ

Removed?
x x x x x x x

In-degree:
0 0 2 1 1 1 1 1 1 1 3
1 0 0 0 0 0 0 0 0 2
0

CSE 142 → CSE 143 → CSE 373 → CSE 374 → CSE 410 → CSE 413 → CSE 415 → CSE 417 → XYZ

CSE 142
CSE 143
CSE 373
CSE 374
CSE 410
CSE 413
CSE 415
CSE 417
XYZ

CSE 142
CSE 143
CSE 373
CSE 374
CSE 410
CSE 413
CSE 415
CSE 417
XYZ

MATH 126
Example

Output:
126
142
143
374
373
410
417
415
413
411
XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ

Removed? x x x x x x x x x

In-degree: 0 0 2 1 1 1 1 1 1 3
0 1 0 0 0 0 0 0 0 2
0 1

CSE 373: Data Structures
Example

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3

Output: 126 142 143 374 373 410 413 417 410 415 417 XYZ
Output:
126
142
143
374
373
410
413
417
XYZ

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 0 0 2
 0 1
 0
EXAMPLE

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x x x x x x x x x x
In-degree: 0 0 2 1 1 1 1 1 1 3
 1 0 0 0 0 0 0 2
 0 1
 0

Output:
126
142
143
374
373
410
413
417
XYZ
415
Needed a vertex with in-degree 0 to start
 • Will always have at least 1 because no cycles

Ties among vertices with in-degrees of 0 can be broken arbitrarily
 • Can be more than one correct answer, by definition, depending on the graph
IMPLEMENTATION

The trick is to avoid searching for a zero-degree node every time!

- Keep the “pending” zero-degree nodes in a list, stack, queue, bag, table, or something
- Order we process them affects output but not correctness or efficiency provided add/remove are both $O(1)$

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes
2. While queue is not empty
 a) $v = \text{dequeue}()$
 b) Output v and remove it from the graph
 c) For each vertex u adjacent to v (i.e. u such that $(v,u) \in E$), decrement the in-degree of u, if new degree is 0, enqueue it
Start with the nodes that have in-degree 0 (no prereqs).
Then eliminate that vertex (print it out) and eliminate its out edges.
What is a valid topological sort of this graph?
What is a valid topological sort of this graph?

F, C, G, D, A, E, B
F, G, D, C, A, E, B
F, G, C, D, A, E, B

Are these all the valid solutions?
TOPOLOGICAL SORT

• What use does this traversal have?
TOPOLOGICAL SORT

• What use does this traversal have?
 • Good for dependency resolution
TOPOLOGICAL SORT

• What use does this traversal have?
 • Good for dependency resolution
 • Can also be used for cycle detection
TOPOLOGICAL SORT

• What use does this traversal have?
 • Good for dependency resolution
 • Can also be used for cycle detection

• How could we find cycles in an undirected graph?
TOPOLOGICAL SORT

• What use does this traversal have?
 • Good for dependency resolution
 • Can also be used for cycle detection

• How could we find cycles in an undirected graph?
 • Any traversal that visits a node more than once has a cycle.
GRAPH PROBLEMS

• When thinking about graphs, it is important to understand what the graph represents
GRAPH PROBLEMS

• When thinking about graphs, it is important to understand what the graph represents
 • Topological sort:
GRAPH PROBLEMS

• When thinking about graphs, it is important to understand what the graph represents
 • Topological sort:
 • Programs and dependencies
 • Courses and prerequisites
GRAPH PROBLEMS

• When thinking about graphs, it is important to understand what the graph represents
 • Topological sort:
 • Programs and dependencies
 • Courses and prereqs
 • What the vertices and edges are impact what the “solution” is
GRAPH PROBLEMS

• What type of problem could we want to solve with a graph of US cities and the freeway distance between them
GRAPH PROBLEMS

• What type of problem could we want to solve with a graph of US cities and the freeway distance between them
 • Same as a lot of network problems
GRAPH PROBLEMS

• What type of problem could we want to solve with a graph of US cities and the freeway distance between them
 • Same as a lot of network problems
 • “Traffic” networks
GRAPH PROBLEMS

• What type of problem could we want to solve with a graph of US cities and the freeway distance between them
 • Same as a lot of network problems
 • “Traffic” networks
 • What do our edges represent?
SINGLE SOURCE SHORTEST PATH

• Given an undirected, *unweighted* graph $G(V,E)$ and a start vertex A, find the shortest path to all connected vertices.
SINGLE SOURCE SHORTEST PATH

• Given an undirected, *unweighted* graph $G(V,E)$ and a start vertex A, find the shortest path to all connected vertices
 • If a graph is unweighted you can treat all of their weights as 1
SINGLE SOURCE SHORTEST PATH

• Given an undirected, unweighted graph \(G(V,E) \) and a start vertex \(A \), find the shortest path to all connected vertices

 • If a graph is unweighted you can treat all of their weights as 1

 • Do a BFS traversal of the tree and keep track of paths!
SINGLE SOURCE SHORTEST PATH

• Given an undirected, *unweighted* graph $G(V,E)$ and a start vertex A, find the shortest path to all connected vertices

 • If a graph is unweighted you can treat all of their weights as 1

 • Do a BFS traversal of the tree and keep track of paths!

 • Path-keeping is non-trivial, we’ll talk about it on Wednesday
SINGLE SOURCE SHORTEST PATH

• Given an undirected, *unweighted* graph $G(V,E)$ and a start vertex A, find the shortest path to all connected vertices
 • If a graph is unweighted you can treat all of their weights as 1
 • Do a BFS traversal of the tree and keep track of paths!
 • Path-keeping is non-trivial, we’ll talk about it on Wednesday
 • What if the graph has weights?
Why BFS won’t work: Shortest path may not have the fewest edges

- Annoying when this happens with costs of flights

We will assume there are no negative weights

- *Problem is ill-defined* if there are negative-cost *cycles*
- *Wednesday’s algorithm is wrong* if *edges* can be negative
 - There are other, slower (but not terrible) algorithms
NEXT CLASS

• Dijkstra’s algorithm
NEXT CLASS

• Dijkstra’s algorithm
• P3 checkpoint 2