CSE 373

NOVEMBER 20™ - TOPOLOGICAL SORT

PROJECT 3

* 500 Internal Error problems

» Hopefully all resolved (or close to)
 P3P1 grades are up (but muted)

 Leave canvas comment
 Emails tomorrow
 End of quarter

GRAPHS

« A graph is composed of two things

» A set of vertices
» A set of edges (which are ordered vertex tuples)
* Trees are types of graphs

« Each of the nodes is a vertex
- Each pointer from parent to child is an edge

 Represented as G(V,E) to indicate that V is the
set of vertices and E is the set of edges

GRAPHS

 Graphs are not an ADT

» There is no “functions” that a graph
supports

- Rather, graphs are a theoretical
framework for understanding certain types
of problems.

» Travelling salesman, path finding,
resource allocating

ANALYZING GRAPHS

* In graphs, there are two important
variables, |V| and |E]

* QOur analysis can now have two inputs

- Before, our input size was n, now we use
V| and |E]

- What is the maximum size of |E|? O(|V|?)

* For any vertices a,b, there can exist at
most one edge (a,b)

* Acan equal B (this is a self loop)
* There can be (b,a) -- directed

GRAPHS

 Paths and Cycles

* A path: a set of edges connecting two
vertices where all of the edges are
connected and neither edges nor vertices
are repeated

* Acycle: a path that starts and ends on the
same

GRAPHS

 Paths and cycles can not have repeated
vertices or edges

* A path that can repeat vertices or edges is
called a walk

* A path that can repeat vertices but not
edges is called a tralil

A circuit is a trail that starts and ends at
the same vertex

GRAPHS

« Graphs can be either directed or
undirected

- Undirected graph, if (A,B) is in the set of
edges, (B,A) must be in the set of edges
 Directed graphs, both can be in the set of

edges, but those graphs have different
connectivity

 We call a graph connected if there is a
path between every pair of vertices

GRAPHS

 Edges can have weights

* This becomes important when we
consider path finding algorithms

- Usually, we consider the weights to be the
some attribute pertaining to the edge

- Each edge has exactly one weight

GRAPHS

« When we consider graphs, we determine
them to be either dense or sparse

* Dense graphs are very connected, each
vertex is connected to a fraction of the

total vertices
« Sparse graphs are less connected and

can be more clustered, each vertex is
connected to some constant number of

vertices

GRAPHS

« When graphs are small, it is difficult to
distinguish between the two

* |If we represent Facebook as a graph,
where users are vertices and “friendships”
are edges, what can we say about the
graph?

* Directed?

« Connected?

* Cyclic?

« Sparse/Dense?

GRAPHS

« When graphs are small, it is difficult to
distinguish between the two

- |If we represent Facebook as a graph,
where users are vertices and “friendships’
are edges, what can we say about the
graph?

* Directed? No, (A,B) means (B,A)

« Connected? Maybe not!

« Cyclic? Yes, mutual friends

« Sparse/Dense? Sparse! 338 average!

]

GRAPHS

« This “value” is called the degree of the
vertex

* If you have 338 friends, then that vertex
has degree 338.

* In directed graph, we separate this into
in-degree and out-degree

« Consider Twitter, where friendship isn’t
symmetric. The number of followers you
have is your in-degree and the number of
people you follow is your out degree

REPRESENTATION

« How do we represent graphs on a
computer?

* Two main approaches

REPRESENTATION

« How do we represent graphs on a
computer?

* Two main approaches
» Adjacency List
* Adjacency Matrix

ADJACENCY LIST

If (u,v) is an edge, then we say v is adjacent to u.

If we want to store these edges then,
* For each vertex, we maintain a list of all edges
coming out of that vertex
The number of elements coming out of the vertex is
called the out-degree

The number of elements coming into the vertex is
the in-degree

ADJACENCY MATRIX

* Imagine a two dimensional |V| x |V| matrix.

« Let the rows be source vertices, and let the rows be
destination vertices
- If the edge (u,v) is in the graph, then matrix[u][V]
IS set to true
* Alternatively, we can set matrix[u][v] to be the
weight of the edge

ADJACENCY MATRIX

* Imagine a two dimensional |V| x |V| matrix.

 Let the rows be source vertices, and let the rows be
destination vertices

- If the edge (u,v) is in the graph, then matrix[u][V]
Is set to true

* Alternatively, we can set matrix[u][v] to be the
weight of the edge

« What is the memory consumption?

« O(|V]|?), but it implicitly stores in and out vertices
* If the graph is dense, then this is more efficient

TERMINOLOGY

 Know the following terms

Vertices and Edges

Directed v. Undirected

In-degree and out-degree
Connected (Strongly connected)
Weighted v. unweighted

Cyclic v. acyclic

DAG: Directed Acyclic Graph

TRAVERSALS

« Since graphs are abstractions similar to
trees, we can also perform traversals.

 |If a graph is connected, i.e. there is a path
between all pairs of vertices, then a
traversal can output all nodes if you do it
cleverly

TRAVERSAL

« Depth-first search (prev graph with (D,G) added to make it
connected

* Traverse the tree with DFS, if there are multiple nodes to
choose from, go alphabetically. Start at A.

TRAVERSAL

Output: A
Current Node: A
Out-vertices: B, D, E

TRAVERSAL

Output: A,B
Current Node: B

Out-vertices: D

TRAVERSAL

o ©
i

Output: A,B, D
Current Node: D
Out-vertices: A,G

TRAVERSAL

o ©
i

Output: A,B, D, A
Current Node: A
Out-vertices: B,D,E

TRAVERSAL

o (=)
(=
@

Output: A,B, D, A Oh, no! We have repeated output!
Current Node: A
Out-vertices: B,D,E

TRAVERSAL

Depth first search needs to check which
nodes have been output or else it can get
stuck in loops.

* This increases the runtime and memory
constraints of the traversal

In a connected graph, a BFS will print all
nodes, but it will repeat if there are cycles
and may not terminate

TRAVERSAL

 As an aside, in-order, pre-order and post-
order traversals only make sense In
binary trees, so they aren’t important for
graphs. However, we do need some way
to order our out-vertices (left and right in
BST).

TRAVERSALS

 For an arbitrary graph and starting node
v, find all nodes reachable from v.

* There exists a path from v
* Doing something or “processing” each node

» Determines if an undirected graph is connected?
If a traversal goes through all vertices, then it is
connected

Basic idea

» Traverse through the nodes like a tree

- Mark the nodes as visited to prevent cycles and
from processing the same node twice

ABSTRACT IDEA IN PSEUDOCODE

void traverseGraph (Node) {
Set pending = emptySet()
pending.add ()
mark as visited

while (pending i1s not empty) {
= pending.remove ()
for each node adjacent to next
if (u is not marked wvisited) {
mark
pending.add (u)

RUNTIME AND OPTIONS

 Assuming we can add and remove from
our “pending” DS in O(1) time, the entire
traversal is O(|E|)

* Our traversal order depends on what we
use for our pending DS.

« Stack : DFS
* Queue: BFS

 These are the main traversal techniques in CS,
but there are others!

COMPARISON

Breadth-first always finds shortest length paths, i.e., “optimal
solutions”

- Better for “what is the shortest path from x to y”

But depth-first can use less space in finding a path
* If longest path in the graph is p and highest out-degree is d
then DFS stack never has more than d*p elements
* But a queue for BFS may hold O(|V|) nodes

A third approach (useful in Artificial Intelligence)

* Iterative deepening (IDFS):
« Try DFS but disallow recursion more than K levels deep
- If that fails, increment K and start the entire search over

* Like BFS, finds shortest paths. Like DFS, less space.

TOPOLOGICAL SORT

PAGE 3
DEPARTMENT COURSE DESCRIPTION PREREQS
COMPUTER CPSC Y32 | INTERMEDIATE COMPILER CPSC Y32

SCIENCE

DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

o e e L0, VoSS et

Omald

— Tl et

TOPOLOGICAL SORT

FAGE 3

DEPARTMENT COURSE DESCRIPTON PREREQS

COMPUTER CPSC Y32) INTERMEDIATE: COMPILER CPSC 432

SCIENCE DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

* It’s never too late to start your xkcd addiction

TOPOLOGICAL SORT

* Topological ordering

* One final ordering for graphs

* Ordering with a focus on dependency
resolutions
 Example, consider a graph where

courses are vertices and prerequisites
are edges.

* A topological ordering is any valid class
order

TOPOLOGICAL SORT

Problem: Given a DAG G=(V,E), output all vertices in an order such
that no vertex appears before another vertex that has an edge to it

Example input:

CSE 374 XYZ

One example output:

126, 142, 143, 374, 373, 417, 410, 413, XYZ, 415

QUESTIONS AND
COMMENTS

Why do we perform topological sorts only on DAGs?
- Because a cycle means there is no correct answer

Is there always a unique answer?

* No, there can be 1 or more answers; depends on the graph
« Graph with 5 topological orders:

Do some DAGs have exactly 1 answer?
* Yes, including all lists

Terminology: A DAG represents a partial order and a topological
sort produces a total order that is consistent with it

USES OF
TOPOLOGICAL SORT

Figuring out how to graduate
Computing an order in which to recompute cells in a spreadsheet
Determining an order to compile files using a Makefile

In general, taking a dependency graph and finding an order of
execution

40

TOPOLOGICAL SORT

1. Label (“mark”) each vertex with its in-degree

« Think “write in a field in the vertex”
« Could also do this via a data structure (e.g., array) on the side

2. While there are vertices not yet output:

a) Choose a vertex v with labeled with in-degree of O
b) Output v and conceptually remove it from the graph

c) For each vertex u adjacent to v (i.e. u such that (v,u) in E),
decrement the in-degree of u

EXAMPLE Output:

CSE 374 XYZ

faami 126 Cse413
sz 41)

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?
In-degree: O o 2 1 1 1 1 1 1 3

CSE373:

Data
Structur

42

EXAMPLE output:

CSE 374 XYZ

faami 126 Cse413
sz 41)

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed?
In-degree: O o 2 1 1 1 1 1 1 3

CSE373:

Data
Structur

43

EXAMPLE output:

CSE 374 XYZ 126

faami 126 Cse413
sz 41)

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x

In-degree: 0 O 1 1 1 1 1 1 3

2
1
0

CSE373:

Data
Structur

44

EXAMPLE output:

CSE 374 XYZ 126

=

faami 126 Cse413
sz 41)

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x X
In-degree: 0 O 2 1 1 1 1 1 1 3
1 0 O
0

CSE373:

Data
Structur

45

EXAMPLE output:

CSE 374 XYZ 126
=
@ @ @ @ 143

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x X X

In-degree: 0 O 2 1 1 1 1 1 1 3 .. .
1 0 0 2 N &
“ m o 9
0 h © 5
. Oah

EXAMPLE output:

CSE 374 XYZ 126

e
@ @ @ @ 143

374
Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x X X X
In-degree: 0 O 2 1 1 1 1 1 1 .. -
1 0 0 00 0 O ~ B
+ M (© g
0 A ® =
. OO0 h

EXAMPLE output:

CSE 374 XYZ 126

e
@ @ @ @ 143

374

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x X X X X
In-degree: O O 2 1 1 1 1 1 1 3

N =

1 0 O O O O o 2 n';rut;
=

0 B © S
O 0O wnv

48

EXAMPLE output:

CSE 374 XYZ 126

e
@ @ @ @ 143

374

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x X X X X X
In-degree: O O 2 1 1 1 12 1 1 3 . .
1 0 0 00 0 0 2 N 2
- M (© g
0 1 th © S
O 0w

49

EXAMPLE output:

CSE 374 XYZ 126

e
@ @ @ @ 143

374

410

Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x X X X X X X
In-degree: 0 O 2 1 1 1 1 1 1 3 .. -
1 0 0 00 0 0 2 N 2
' y M (© g
0 1 W+
oo &h

50 O

EXAMPLE output:

CSE 374 XYZ 126

e
@ @ @ @ 143

374

410

413
Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x X X X X X X X
In-degree: 0 O 2 1 1 1 1 1 1 3 .. -
1 0 0 O 0 0O 0 2 lﬂ\’ =
+ - M (© g
0 1 :',"') ':-"5 -
51 0 O 0O 5

Output:
EXAMPLE o

CSE 374 XYZ

142

@ 143
ST
373

a5 G
G

413

XYZ
Node: 126 142 143 374 373 410 413 415 417 XYZ
Removed? x X X X X X X X X
In-degree: O O 2 1 1 1 1 1 1 3 . .
1 0 0 O 0 0 0 2 lﬂ\’ =
4) M (© g
0 1 bu) .'('-U' :
O 0w

52 O

NOTICE

Needed a vertex with in-degree 0 to start

* Will always have at least 1 because no cycles

Ties among vertices with in-degrees of 0 can be
broken arbitrarily

» Can be more than one correct answer, by definition,
depending on the graph

IMPLEMENTATION

The trick is to avoid searching for a zero-degree node every time!

+ Keep the “pending” zero-degree nodes in a list, stack, queue, bag, table,

or something
» Order we process them affects output but not correctness or efficiency

provided add/remove are both O(1)

Using a queue:

1. Label each vertex with its in-degree, enqueue 0-degree nodes

2. While queue is not empty

a) v =dequeue()

b) Output v and remove it from the graph

c) Foreach vertex u adjacent to v (i.e. u such that (v,u) in E),
decrement the in-degree of u, if new degree is 0, enqueue it

TRAVERSAL

Start with the nodes that have in-degree 0 (no prereqs)

Then eliminate that vertex (print it out) and eliminate its out
edges.

TRAVERSAL

What is a valid topological sort of this graph?

TRAVERSAL

What is a valid topological sort of this graph?
F.C,G,D,A/E,B F.G,D,C,AEB
F,G,C,D,AJE,B Are these all the valid solutions?

TOPOLOGICAL SORT

« What use does this traversal have?

TOPOLOGICAL SORT

« What use does this traversal have?
« (Good for dependency resolution

TOPOLOGICAL SORT

« What use does this traversal have?

« (Good for dependency resolution
« Can also be used for cycle detection

TOPOLOGICAL SORT

« What use does this traversal have?

« (Good for dependency resolution
« Can also be used for cycle detection

 How could we find cycles in an
undirected graph?

TOPOLOGICAL SORT

« What use does this traversal have?

« (Good for dependency resolution

« Can also be used for cycle detection
 How could we find cycles in an

undirected graph?

* Any traversal that visits a node more than
once has a cycle.

GRAPH PROBLEMS

 When thinking about graphs, it is
important to understand what the graph
represents

GRAPH PROBLEMS

 When thinking about graphs, it is
important to understand what the graph
represents

* Topological sort:

GRAPH PROBLEMS

 When thinking about graphs, it is
important to understand what the graph
represents

* Topological sort:
* Programs and dependencies
» Courses and prereqgs

GRAPH PROBLEMS

 When thinking about graphs, it is
important to understand what the graph
represents

* Topological sort:

* Programs and dependencies
» Courses and prereqgs

* What the vertices and edges are impact
what the “solution” is

GRAPH PROBLEMS

 What type of problem could we want to
solve with a graph of US cities and the
freeway distance between them

GRAPH PROBLEMS

 What type of problem could we want to
solve with a graph of US cities and the
freeway distance between them

« Same as a lot of network problems

GRAPH PROBLEMS

 What type of problem could we want to
solve with a graph of US cities and the
freeway distance between them

« Same as a lot of network problems
* “Traffic” networks

GRAPH PROBLEMS

 What type of problem could we want to
solve with a graph of US cities and the
freeway distance between them
- Same as a lot of network problems
* “Traffic” networks

« What do our edges represent?

SINGLE SOURCE SHORTEST
PATH

« Given an undirected, unweighted graph
G(V,E) and a start vertex A, find the
shortest path to all connected vertices

SINGLE SOURCE SHORTEST
PATH

« Given an undirected, unweighted graph
G(V,E) and a start vertex A, find the
shortest path to all connected vertices

* If a graph is unweighted you can treat all
of their weights as 1

SINGLE SOURCE SHORTEST
PATH

« Given an undirected, unweighted graph
G(V,E) and a start vertex A, find the
shortest path to all connected vertices

* If a graph is unweighted you can treat all
of their weights as 1

* Do a BFS traversal of the tree and keep
track of paths!

SINGLE SOURCE SHORTEST
PATH

« Given an undirected, unweighted graph
G(V,E) and a start vertex A, find the
shortest path to all connected vertices

* If a graph is unweighted you can treat all
of their weights as 1

* Do a BFS traversal of the tree and keep
track of paths!

- Path-keeping is non-trivial, we'll talk about
it on Wednesday

SINGLE SOURCE SHORTEST
PATH

« Given an undirected, unweighted graph
G(V,E) and a start vertex A, find the
shortest path to all connected vertices

* If a graph is unweighted you can treat all
of their weights as 1

* Do a BFS traversal of the tree and keep
track of paths!

- Path-keeping is non-trivial, we'll talk about
it on Wednesday

* What if the graph has weights?

PATH-FINDING

100 100
100 100 @

500

Why BFS won’t work: Shortest path may not have the fewest edges
« Annoying when this happens with costs of flights

We will assume there are no negative weights

« Problem is ill-defined if there are negative-cost cycles

 Wednesday’s algorithm is wrong if edges can be negative
— There are other, slower (but not terrible) algorithms

NEXT CLASS

* Dijkstra’s algorithm

NEXT CLASS

* Dijkstra’s algorithm
* P3 checkpoint 2

