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•  What sorts of behavior do shoppers 
exhibit? 

•  What constraints are there on a shopper? 
•  What improvements would make a better 

shopping list? 
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DESIGN DECISIONS 
•  Shopping list? 
•  Stack? 

•  What sorts of behavior does the ‘stack’ support? 
•  What constraints are there on a stack user? 

(Is there a change in certainty?) 
•  What improvements would make a better stack? 

(What problems might arise in a stack?) 
 



STACK ADT 
•  Important to know exactly what we expect 

from a stack. 
 



STACK ADT 
•  Important to know exactly what we expect 

from a stack. 
•  Push(Object a) returns null; (other options?) 
•  Pop() returns Object a: where a is the element on ‘top’ of 

the stack; also removes a from the stack 
•  Top() returns Object a: where a is the element on ‘top’ of 

the stack without removing that element from the stack 



STACK ADT 
•  Important to know exactly what we expect 

from a stack. 
•  Push(Object a) returns null; (other options?) 
•  Pop() returns Object a: where a is the element on ‘top’ of 

the stack; also removes a from the stack 
•  Top() returns Object a: where a is the element on ‘top’ of 

the stack without removing that element from the stack 
•  How long will these operations take? 

 



STACK ADT 
•  Important to know exactly what we expect 
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•  Push(Object a) returns null; (other options?) 
•  Pop() returns Object a: where a is the element on ‘top’ of 

the stack; also removes a from the stack 
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the stack without removing that element from the stack 
•  How long will these operations take? 
 
That depends on the Data Structure and Implementation 
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QUEUE ADT 
•  What behavior do we expect from the 

queue? 
•  enqueue(Object toInsert):  

!adds to the queue 
•  dequeue():  

!removes the ‘next’ element from the queue 
•  front():  

!peeks at the ‘next’ element 
•  Which element is ‘next’? 

•  FIFO – ‘first in, first out’ ordering 
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STACK AND QUEUE ADT 
•  Stacks and Queues both support the same 

functions 
•  insert: push() and enqueue() 
•  remove: pop() and dequeue() 
•  peek: top() and front() 

•  This isn’t sufficient to distinguish them, 
their behavior is also a critical part of their 
ADT. Which element do we expect to be 
‘removed’? 
•  FIFO v LIFO 

 



STACK AND QUEUE ADT 
•  The ADT describes the methods provided 

and the behavior we expect from them 
•  The Data Structure is a theoretical 

arrangement of the data that supports the 
functionality of the ADT  
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STACK AND QUEUE ADT 
•  What Data Structures might we use for 

Stacks and Queues? 
•  Arrays 
•  How many ways can we use arrays? 
•  Which ways are efficient? 



QUEUE ADT 
•  Array implementation 
•  Unique problems? 

 



QUEUE ADT 
•  Array implementation 
•  Unique problems? 

 What if the array is full? 

 



QUEUE ADT 
•  Array implementation 
•  Unique problems? 

 What if the array is full? 
 What if we alternate enqueue() and dequeue()? 
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QUEUE ADT 
•  Array implementation 
•  Unique problems? 

•  End of Array 
•  Unique solutions? 

•  Resizing (costly!) 
•  Circular Array (?) 
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Front Back 

Why this way? 
What function to front and back serve? 



CIRCULAR QUEUES 

Front Back 

enqueue(4) 
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4 
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Which operations will move what pointers? 
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4 

Front Back 

Let’s do several enqueues 
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What happens now, on enqueue(7)? 
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Problems here? 
How to implement? 



CIRCULAR QUEUES 

4 5 9 2 3 1 6 7 

Front Back 

The queue is full, but it is the same 
situation (front == back) as when the queue 
is empty. This is a boundary condition. 



CIRCULAR QUEUES 

4 5 9 2 3 1 6 7 

Front Back 

We have to resize the list (or deny the add) 
if we get another enqueue. 



CIRCULAR QUEUES 

4 5 9 2 3 1 6 7 

Front Back 

What if we dequeue some items? 
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CIRCULAR QUEUES 

5 9 2 3 1 6 7 

Front Back 

Dequeue() outputs 4 
Is the 4 really “deleted”? 
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9 2 3 1 6 7 

Front Back 

Output 5 



CIRCULAR QUEUES 

9 2 3 1 6 7 

Front Back 

Now we’ve freed up some space and can 
enqueue more 



CIRCULAR QUEUES 

5 9 2 3 1 6 7 

Front Back 

enqueue(5) 
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CIRCULAR QUEUES 
•  By moving the front and back pointers, 

we can utilize all of the space in the array 
•  Advantages over a linked list? 

•  Fixed number of items 
•  Small data (Memory efficiency) 

•  From Wednesday: What is the memory overhead 
of the linked list? 
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TESTING 
•  Implementation is great if it works on the 

first try 
•  In a large implementation, what is 

causing the problem? 
•  Object oriented programming allows 

modularity – good testing can pinpoint 
bugs to particular modules 
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•  Two primary types of testing 

•  Black box 
•  Behavior only, no peeking into the code 
•  This usually tests ADT behavior 
•  Can test performance/efficiency by 

using a timer 



TESTING 
•  Two primary types of testing 

•  White box (or clear box) 
•  Where there is an understanding of the 

implementation that can be leveraged 
for testing 

•  If you’re writing your own DS, you can 
peek into attributes that you would 
normally refuse access to the client 
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TESTING 
•  Many test cases (and large ones) 

•  You can prove that an algorithm is 
correct, but you cannot necessarily prove 
an arbitrary implementation is correct 

•  More inputs can increase certainty 
•  Adversarial testing 
•  The client is not your friend 



TESTING 
•  Good things to test 

•  Expected behavior (at multiple sizes) 
•  Forbidden input 
•  Empty/Null 
•  Side effects 
•  Boundary/Edge Cases 



NEW ADT 
•  Stacks and Queues are great, but they’re 

very simple. 
•  Data structures is about storing and 

managing data, but S/Q restrict access to 
that data 

•  What sort of behavior would be more 
general? 



DICTIONARY ADT 
•  Operates on two data types 

•  a key, our lookup data type 
•  a value, the related data stored in the 

structure 
•  Supports three main functions 

•  insert(K key, V value) 
•  delete(K key) 
•  find(K key) 
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DICTIONARY ADT 
•  Example 

•  English Language Dictionary 
•  Keys here are words (Strings) 
•  Values are definitions (Strings) 

•  Keys and Values can be the same data 
type 

•  find(String word) will return the definition 
of the word – provided that the 
<word,definition> pair was added to the 
dictionary 



NEXT WEEK 
•  Dictionary/Map behavior and ADT 
•  Simple Implementations 
•  Analyzing behavior, what do we mean 

when we say an algorithm is efficient? 


