
CSE 373
NOVEMBER 8TH – COMPARISON SORTS

ASSORTED MINUTIAE
•  Bug in Project 3 files--reuploaded at

midnight on Monday
•  Project 2 scores

•  Canvas groups is garbage – updated tonight
•  Extra credit

•  P1 – done and feedback soon
•  P3 – EC posted to website

•  Midterm regrades – next Wednesday
12:00-2:00

SORTING
•  Problem statement:

•  Collection of Comparable data
•  Result should be a sorted collection of the

data

SORTING
•  Problem statement:

•  Collection of Comparable data
•  Result should be a sorted collection of the

data
•  Motivation?

SORTING
•  Problem statement:

•  Collection of Comparable data
•  Result should be a sorted collection of the

data
•  Motivation?

•  Pre-processing v. find times
•  Sorting v. Maintaining sortedness

SORTING
•  Important definitions

SORTING
•  Important definitions

•  In-place: Requires only O(1) extra memory
•  usually means the array is mutated

SORTING
•  Important definitions

•  In-place: Requires only O(1) extra memory
•  usually means the array is mutated

•  Stable: For any two elements have the same
comparative value, then after the sort, which
ever came first will stay first

•  Sorting by first name and then last name
will give you last then first with a stable
sort.

•  The most recent sort will always be the
primary

SORTING
•  Important definitions

•  Interruptable (top k): the algorithm can run
only until the first k elements are in sorted
order

SORTING
•  Important definitions

•  Interruptable (top k): the algorithm can run
only until the first k elements are in sorted
order

•  Comparison sort: utilizes comparisons
between elements to produce the final sorted
order.

SORTING
•  Important definitions

•  Interruptable (top k): the algorithm can run
only until the first k elements are in sorted
order

•  Comparison sort: utilizes comparisons
between elements to produce the final sorted
order.

•  Bogo sort is not a comparison sort

SORTING
•  Important definitions

•  Interruptable (top k): the algorithm can run
only until the first k elements are in sorted
order

•  Comparison sort: utilizes comparisons
between elements to produce the final sorted
order.

•  Bogo sort is not a comparison sort
•  Comparison sorts are Ω(n log n), they cannot do

better than this

SORTING
•  What are the sorts we’ve seen so far?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort:

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable? Not usually

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable? How?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable? How?
•  When you have your lowest candidate, shift other

candidates over (similar to bubble sort)

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable? How?
•  When you have your lowest candidate, shift other

candidates over (similar to bubble sort)
•  In place?

SORTING
•  What are the sorts we’ve seen so far?

•  Selection sort
•  Algorithm? For each element, iterate through the array and

select the lowest remaining element and place it at the end
of the sorted portion.

•  Runtime:
•  First run, you must select from n elements, the

second, from n-1, and the kth from n-(k-1).
•  What is this summation? n(n-1)/2

•  Stable? How?
•  When you have your lowest candidate, shift other

candidates over (similar to bubble sort)
•  In place? Can be, but can also create a separate collection

(if we only want the top 5, for example)

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – what case is this?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case:

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n)

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

•  Stable?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

•  Stable? Yes, if we maintain sorted order in case of ties.

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of

the array. For each new element, we swap it into the
sorted portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

•  Stable? Yes, if we maintain sorted order in case of ties.
•  In-place?

SORTING
•  What are the sorts we’ve seen so far?

•  Insertion Sort:
•  Algorithm? Maintain a sorted portion at the beginning of the

array. For each new element, we swap it into the sorted
portion until it reaches it’s correct location

•  Runtime?
•  Worst-case: O(n2) – reverse sorted order
•  Best-case: O(n) – sorted order
•  Where does this difference come from?

•  When “swapping” into the sorted array, it can stop
when it reaches the correct position, possibly
terminating early. Selection sort must check all k
elements to be sure it has the correct one

•  Stable? Yes, if we maintain sorted order in case of ties.
•  In-place? Can be easily. Since not interruptable, having a

duplicate array is only necessary if you don’t want the original
array to be mutated

SORTING
•  What other sorting techniques can we

consider?

SORTING
•  What other sorting techniques can we

consider?
•  We know O(n log n) is possible. How do we do it?

SORTING
•  What other sorting techniques can we

consider?
•  We know O(n log n) is possible. How do we do it?
•  Heap sort works on principles we already know.

SORTING
•  What other sorting techniques can we

consider?
•  We know O(n log n) is possible. How do we do it?
•  Heap sort works on principles we already know.

•  Building a heap from an array takes O(n) time

SORTING
•  What other sorting techniques can we

consider?
•  We know O(n log n) is possible. How do we do it?
•  Heap sort works on principles we already know.

•  Building a heap from an array takes O(n) time
•  Removing the smallest element from the array takes

O(log n)

SORTING
•  What other sorting techniques can we

consider?
•  We know O(n log n) is possible. How do we do it?
•  Heap sort works on principles we already know.

•  Building a heap from an array takes O(n) time
•  Removing the smallest element from the array takes

O(log n)
•  There are n elements.

SORTING
•  What other sorting techniques can we

consider?
•  We know O(n log n) is possible. How do we do it?
•  Heap sort works on principles we already know.

•  Building a heap from an array takes O(n) time
•  Removing the smallest element from the array takes

O(log n)
•  There are n elements.
•  N + N*log N = O(N log N)

SORTING
•  What other sorting techniques can we

consider?
•  We know O(n log n) is possible. How do we do it?
•  Heap sort works on principles we already know.

•  Building a heap from an array takes O(n) time
•  Removing the smallest element from the array takes

O(log n)
•  There are n elements.
•  N + N*log N = O(N log N)
•  Using Floyd’s method does not improve the asymptotic

runtime for heap sort, but it is an improvement.

HEAP SORT
•  How do we actually implement this sort?

•  Can we do it in place?

HEAP SORT
•  How do we actually implement this sort?

•  Can we do it in place?

IN-PLACE HEAP SORT
•  Treat the initial array as a heap (via buildHeap)
•  When you delete the ith element, put it at arr[n-i]

•  That array location isn’t needed for the heap anymore!

4 7 5 9 8 6 10 3 2 1

sorted part heap part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part

put the min at the end of the heap
data

HEAP SORT
•  How do we actually implement this sort?

•  Can we do it in place?
•  Is this sort stable?

HEAP SORT
•  How do we actually implement this sort?

•  Can we do it in place?
•  Is this sort stable?

•  No. Recall that heaps do not preserve FIFO
property

HEAP SORT
•  How do we actually implement this sort?

•  Can we do it in place?
•  Is this sort stable?

•  No. Recall that heaps do not preserve FIFO
property

•  If it needed to be stable, we would have to
modify the priority to indicate its place in the
array, so that each element has a unique
priority.

IN-PLACE HEAP SORT

4 7 5 9 8 6 10 3 2 1

sorted part heap part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part

put the min at the end of the heap
data

What is undesirable about this method?

IN-PLACE HEAP SORT

4 7 5 9 8 6 10 3 2 1

sorted part heap part

arr[n-i]=
deleteMin()

5 7 6 9 8 10 4 3 2 1

sorted part heap part

put the min at the end of the heap
data

What is undesirable about this method?
 You must reverse the array at the end.

HEAP SORT
•  Can implement with a max-heap, then the

sorted portion of the array fills in from the
back and doesn’t need to be reversed at the
end.

“AVL SORT”? “HASH SORT”?
AVL Tree: sure, we can also use an AVL tree to:

“AVL SORT”? “HASH SORT”?
AVL Tree: sure, we can also use an AVL tree to:

•  insert each element: total time O(n log n)
•  Repeatedly deleteMin: total time O(n log n)

•  Better: in-order traversal O(n), but still O(n log n) overall
•  But this cannot be done in-place and has worse constant

factors than heap sort

“AVL SORT”? “HASH SORT”?
AVL Tree: sure, we can also use an AVL tree to:

•  insert each element: total time O(n log n)
•  Repeatedly deleteMin: total time O(n log n)

•  Better: in-order traversal O(n), but still O(n log n) overall
•  But this cannot be done in-place and has worse constant

factors than heap sort

Hash Structure: don’t even think about trying to sort with a
hash table!

“AVL SORT”? “HASH SORT”?
AVL Tree: sure, we can also use an AVL tree to:

•  insert each element: total time O(n log n)
•  Repeatedly deleteMin: total time O(n log n)

•  Better: in-order traversal O(n), but still O(n log n) overall
•  But this cannot be done in-place and has worse constant

factors than heap sort

Hash Structure: don’t even think about trying to sort with a
hash table!

•  Finding min item in a hashtable is O(n), so this would be a
slower, more complicated selection sort

SORTING: THE BIG
PICTURE

Simple	

algorithms:	

O(n2)	

Fancier	

algorithms:	

O(n	
 log	
 n)	

Comparison	

lower	
 bound:	

Ω(n	
 log	
 n)	

Specialized	

algorithms:	

O(n)	

Handling	

huge	
 data	

sets	

Inser?on	
 sort	

Selec?on	
 sort	

Shell	
 sort	

…

Heap	
 sort	

Merge	
 sort	

Quick	
 sort	
 (avg)	

…	

Bucket	
 sort	

Radix	
 sort	

External	

sor?ng	

DIVIDE AND CONQUER
Divide-and-conquer is a useful technique for solving many kinds of
problems (not just sorting). It consists of the following steps:

1. Divide your work up into smaller pieces (recursively)
2. Conquer the individual pieces (as base cases)
3. Combine the results together (recursively)

algorithm(input) {!
!if (small enough) {!
! !CONQUER, solve, and return input!
!} else {!
! !DIVIDE input into multiple pieces!
! !RECURSE on each piece!
! !COMBINE and return results!
!}!

}!

DIVIDE-AND-CONQUER
SORTING

Two great sorting methods are fundamentally divide-and-conquer

Mergesort:

Sort the left half of the elements (recursively)
Sort the right half of the elements (recursively)
Merge the two sorted halves into a sorted whole

Quicksort:

Pick a “pivot” element
Divide elements into less-than pivot and greater-than pivot
Sort the two divisions (recursively on each)
Answer is: sorted-less-than....pivot....sorted-greater-than

MERGE SORT

Unsorted

Unsorted Unsorted

Divide: Split array roughly into half

Sorted

Sorted Sorted

Conquer: Return array when length ≤ 1

Combine: Combine two sorted arrays using merge

MERGE SORT:
PSEUDOCODE
Core idea: split array in half, sort each half, merge back
together. If the array has size 0 or 1, just return it unchanged

mergesort(input) {!
!if (input.length < 2) {!
! !return input;!
!} else {!
! !smallerHalf = sort(input[0, ..., mid]);!
! !largerHalf = sort(input[mid + 1, ...]);!
! !return merge(smallerHalf, largerHalf);!
!}!

}!

MERGE SORT
EXAMPLE

7 2 8 4 5 3 1 6

7 2 8 4

7 2

7 2

8 4

8 4

5 3 1 6

5 3 1 6

5 3 1 6

MERGE SORT
EXAMPLE

66

1 2 3 4 5 6 7 8

2 4 7 8

2 7

7 2

4 8

8 4

1 3 5 6

3 5 1 6

5 3 1 6

MERGE SORT
ANALYSIS

Runtime:
•  subdivide the array in half each time: O(log(n)) recursive calls
•  merge is an O(n) traversal at each level

So, the best and worst case runtime is the same: O(n log(n))

O(log(n))
levels

MERGE SORT
ANALYSIS

Stable?
Yes! If we implement the merge function correctly, merge
sort will be stable.

In-place?
No. Merge must construct a new array to contain the
output, so merge sort is not in-place.

We’re constantly copying and creating new arrays at
each level...

One Solution: create a single auxiliary array and swap
between it and the original on each level.

QUICK SORT

5

2 8 4 7 3 1 6

Divide: Split array around a ‘pivot’

5

2 4

3

7

6

8

1

numbers <=
pivot

numbers > pivot

pivo
t

QUICK SORT

Unsorted

<= P > P

Divide: Pick a pivot, partition into
groups

Sorted

<= P > P

Conquer: Return array when length
≤ 1

Combine: Combine sorted partitions and pivot

P

P

QUICK SORT
PSEUDOCODE
Core idea: Pick some item from the array and call it the pivot. Put all
items smaller in the pivot into one group and all items larger in the
other and recursively sort. If the array has size 0 or 1, just return it
unchanged.

quicksort(input) {!
!if (input.length < 2) {!
! !return input;!
!} else {!
! !pivot = getPivot(input);!
! !smallerHalf = sort(getSmaller(pivot, input));!
! !largerHalf = sort(getBigger(pivot, input));!
! !return smallerHalf + pivot + largerHalf;!
!}!

}!

QUICKSORT

13
81

92
43

65

31 57

26

75
0

S select pivot value

13 81 92
43 65

31

57 26

75 0
S1 S2 partition S

13 43 31 57 26 0

S1
81 92 75 65

S2
Quicksort(S1) and

Quicksort(S2)

13 43 31 57 26 0 65 81 92 75 S Presto! S is sorted

[Weiss]

QUICKSORT

73

2 4 3 1 8 9 6

2 1 9 4 6

 2

 1 2

 1 2 3 4

 1 2 3 4 5 6 8 9

Conquer

Conquer

Conquer

Divide

Divide

Divide

1 Element

8 2 9 4 5 3 1 6

5

8 3

1

6 8 9

DETAILS
Have not yet explained:

DETAILS
Have not yet explained:

How to pick the pivot element

•  Any choice is correct: data will end up sorted
•  But as analysis will show, want the two partitions to be about

equal in size

DETAILS
Have not yet explained:

How to pick the pivot element

•  Any choice is correct: data will end up sorted
•  But as analysis will show, want the two partitions to be about

equal in size

How to implement partitioning
•  In linear time
•  In place

