
CSE 373 
NOVEMBER 8TH – COMPARISON SORTS 



ASSORTED MINUTIAE 
•  Bug in Project 3 files--reuploaded at 

midnight on Monday 
•  Project 2 scores 

•  Canvas groups is garbage – updated tonight 
•  Extra credit 

•  P1 – done and feedback soon 
•  P3 – EC posted to website 

•  Midterm regrades – next Wednesday 
12:00-2:00 
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•  Collection of Comparable data 
•  Result should be a sorted collection of the 

data 
•  Motivation? 

•  Pre-processing v. find times 
•  Sorting v. Maintaining sortedness 
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SORTING 
•  Important definitions 

•  In-place: Requires only O(1) extra memory 
•  usually means the array is mutated 

•  Stable: For any two elements have the same 
comparative value, then after the sort, which 
ever came first will stay first 

•  Sorting by first name and then last name 
will give you last then first with a stable 
sort. 

•  The most recent sort will always be the 
primary 
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SORTING 
•  Important definitions 

•  Interruptable (top k): the algorithm can run 
only until the first k elements are in sorted 
order 

•  Comparison sort: utilizes comparisons 
between elements to produce the final sorted 
order. 

•  Bogo sort is not a comparison sort 
•  Comparison sorts are Ω(n log n), they cannot do 

better than this 
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SORTING 
•  What are the sorts we’ve seen so far? 

•  Selection sort 
•  Algorithm? For each element, iterate through the array and 

select the lowest remaining element and place it at the end 
of the sorted portion. 

•  Runtime: 
•  First run, you must select from n elements, the 

second, from n-1, and the kth from n-(k-1).   
•  What is this summation? n(n-1)/2 

•  Stable? How? 
•  When you have your lowest candidate, shift other 

candidates over (similar to bubble sort) 
•  In place? Can be, but can also create a separate collection 

(if we only want the top 5, for example) 
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SORTING 
•  What are the sorts we’ve seen so far? 

•  Insertion Sort: 
•  Algorithm? Maintain a sorted portion at the beginning of the 

array. For each new element, we swap it into the sorted 
portion until it reaches it’s correct location 

•  Runtime? 
•  Worst-case: O(n2) – reverse sorted order 
•  Best-case: O(n) – sorted order 
•  Where does this difference come from? 

•  When “swapping” into the sorted array, it can stop 
when it reaches the correct position, possibly 
terminating early. Selection sort must check all k 
elements to be sure it has the correct one 

•  Stable? Yes, if we maintain sorted order in case of ties. 
•  In-place? Can be easily. Since not interruptable, having a 

duplicate array is only necessary if you don’t want the original 
array to be mutated 



SORTING 
•  What other sorting techniques can we 

consider? 



SORTING 
•  What other sorting techniques can we 

consider? 
•  We know O(n log n) is possible. How do we do it? 



SORTING 
•  What other sorting techniques can we 

consider? 
•  We know O(n log n) is possible. How do we do it? 
•  Heap sort works on principles we already know. 



SORTING 
•  What other sorting techniques can we 

consider? 
•  We know O(n log n) is possible. How do we do it? 
•  Heap sort works on principles we already know. 

•  Building a heap from an array takes O(n) time 



SORTING 
•  What other sorting techniques can we 

consider? 
•  We know O(n log n) is possible. How do we do it? 
•  Heap sort works on principles we already know. 

•  Building a heap from an array takes O(n) time 
•  Removing the smallest element from the array takes  

O(log n) 



SORTING 
•  What other sorting techniques can we 

consider? 
•  We know O(n log n) is possible. How do we do it? 
•  Heap sort works on principles we already know. 

•  Building a heap from an array takes O(n) time 
•  Removing the smallest element from the array takes  

O(log n) 
•  There are n elements. 



SORTING 
•  What other sorting techniques can we 

consider? 
•  We know O(n log n) is possible. How do we do it? 
•  Heap sort works on principles we already know. 

•  Building a heap from an array takes O(n) time 
•  Removing the smallest element from the array takes  

O(log n) 
•  There are n elements. 
•  N + N*log N = O(N log N) 



SORTING 
•  What other sorting techniques can we 

consider? 
•  We know O(n log n) is possible. How do we do it? 
•  Heap sort works on principles we already know. 

•  Building a heap from an array takes O(n) time 
•  Removing the smallest element from the array takes  

O(log n) 
•  There are n elements. 
•  N + N*log N = O(N log N) 
•  Using Floyd’s method does not improve the asymptotic 

runtime for heap sort, but it is an improvement. 
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IN-PLACE HEAP SORT 
•  Treat the initial array as a heap (via buildHeap) 
•  When you delete the ith  element, put it at arr[n-i] 

•  That array location isn’t needed for the heap anymore! 

4 7 5 9 8 6 10 3 2 1 

sorted part heap part 

arr[n-i]= 
deleteMin() 

5 7 6 9 8 10 4 3 2 1 

sorted part heap part 

put the min at the end of the heap 
data 
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HEAP SORT 
•  How do we actually implement this sort? 

•  Can we do it in place? 
•  Is this sort stable? 

•  No. Recall that heaps do not preserve FIFO 
property 

•  If it needed to be stable, we would have to 
modify the priority to indicate its place in the 
array, so that each element has a unique 
priority. 



IN-PLACE HEAP SORT 
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IN-PLACE HEAP SORT 

4 7 5 9 8 6 10 3 2 1 

sorted part heap part 

arr[n-i]= 
deleteMin() 

5 7 6 9 8 10 4 3 2 1 

sorted part heap part 

put the min at the end of the heap 
data 

What is undesirable about this method? 
 You must reverse the array at the end. 



HEAP SORT 
•  Can implement with a max-heap, then the 

sorted portion of the array fills in from the 
back and doesn’t need to be reversed at the 
end. 
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“AVL SORT”?  “HASH SORT”? 
AVL Tree: sure, we can also use an AVL tree to: 

•  insert each element: total time O(n log n) 
•  Repeatedly deleteMin: total time O(n log n) 

•  Better: in-order traversal O(n), but still O(n log n) overall 
•  But this cannot be done in-place and has worse constant 

factors than heap sort 
 

Hash Structure: don’t even think about trying to sort with a 
hash table! 

•  Finding min item in a hashtable is O(n), so this would be a 
slower, more complicated selection sort 

 



SORTING: THE BIG 
PICTURE 

Simple	
  
algorithms:	
  

O(n2)	
  

Fancier	
  
algorithms:	
  
O(n	
  log	
  n)	
  

Comparison	
  
lower	
  bound:	
  
Ω(n	
  log	
  n)	
  

Specialized	
  
algorithms:	
  

O(n)	
  

Handling	
  
huge	
  data	
  

sets	
  

Inser?on	
  sort	
  
Selec?on	
  sort	
  
Shell	
  sort	
  
… 

Heap	
  sort	
  
Merge	
  sort	
  
Quick	
  sort	
  (avg)	
  
…	
  

Bucket	
  sort	
  
Radix	
  sort	
  

External	
  
sor?ng	
  



DIVIDE AND CONQUER 
Divide-and-conquer is a useful technique for solving many kinds of 
problems (not just sorting). It consists of the following steps: 

1. Divide your work up into smaller pieces (recursively) 
2. Conquer the individual pieces (as base cases) 
3. Combine the results together (recursively) 

algorithm(input) {!
!if (small enough) {!
! !CONQUER, solve, and return input!
!} else {!
! !DIVIDE input into multiple pieces!
! !RECURSE on each piece!
! !COMBINE and return results!
!}!

}!



DIVIDE-AND-CONQUER 
SORTING 

Two great sorting methods are fundamentally divide-and-conquer 
 
Mergesort:      

Sort the left half of the elements (recursively) 
Sort the right half of the elements (recursively) 
Merge the two sorted halves into a sorted whole 

 
Quicksort:     

Pick a “pivot” element  
Divide elements into less-than pivot and greater-than pivot 
Sort the two divisions (recursively on each) 
Answer is: sorted-less-than....pivot....sorted-greater-than 

     
 



MERGE SORT 

Unsorted 

Unsorted Unsorted 

Divide: Split array roughly into half 

Sorted 

Sorted Sorted 

Conquer: Return array when length ≤ 1 

Combine: Combine two sorted arrays using merge 



MERGE SORT: 
PSEUDOCODE 
Core idea: split array in half, sort each half, merge back 
together. If the array has size 0 or 1, just return it unchanged 

mergesort(input) {!
!if (input.length < 2) {!
! !return input;!
!} else {!
! !smallerHalf = sort(input[0, ..., mid]);!
! !largerHalf = sort(input[mid + 1, ...]);!
! !return merge(smallerHalf, largerHalf);!
!}!

}!
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1 2 3 4 5 6 7 8 

2 4 7 8 

2 7 

7 2 

4 8 

8 4 

1 3 5 6 

3 5 1 6 

5 3 1 6 



MERGE SORT 
ANALYSIS 

Runtime: 
•  subdivide the array in half each time: O(log(n)) recursive calls 
•  merge is an O(n) traversal at each level  

So, the best and worst case runtime is the same: O(n log(n)) 

O(log(n)) 
levels 



MERGE SORT 
ANALYSIS 

Stable? 
Yes!  If we implement the merge function correctly, merge 
sort will be stable. 

In-place? 
No. Merge must construct a new array to contain the 
output, so merge sort is not in-place. 

 
We’re constantly copying and creating new arrays at 
each level... 
 
One Solution: create a single auxiliary array and swap 
between it and the original on each level. 



QUICK SORT 

5 

2 8 4 7 3 1 6 

Divide: Split array around a ‘pivot’ 

5 

2 4 

3 

7 

6 

8 

1 

numbers <= 
pivot 

numbers > pivot 

pivo
t 



QUICK SORT 

Unsorted 

<= P > P  

Divide: Pick a pivot, partition into 
groups 

Sorted 

<= P > P 

Conquer: Return array when length 
≤ 1 

Combine: Combine sorted partitions and pivot 

P 

P 



QUICK SORT 
PSEUDOCODE 
Core idea: Pick some item from the array and call it the pivot. Put all 
items smaller in the pivot into one group and all items larger in the 
other and recursively sort. If the array has size 0 or 1, just return it 
unchanged. 

quicksort(input) {!
!if (input.length < 2) {!
! !return input;!
!} else {!
! !pivot = getPivot(input);!
! !smallerHalf = sort(getSmaller(pivot, input));!
! !largerHalf = sort(getBigger(pivot, input));!
! !return smallerHalf + pivot + largerHalf;!
!}!

}!



QUICKSORT 

13 
81 

92 
43 

65 

31 57 

26 

75 
0 

S select pivot value 

13 81 92 
43 65 

31 

57 26 

75 0 
S1 S2 partition S 

13 43 31 57 26 0 

S1 
81 92 75 65 

S2 
Quicksort(S1) and 

Quicksort(S2) 

13 43 31 57 26 0 65 81 92 75 S Presto!  S is sorted 

[Weiss] 
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2   1 9 4 6 

        2                 

   1   2                    

        1   2   3   4 

        1   2   3   4   5   6   8   9 

Conquer 

Conquer 

Conquer 

Divide 

Divide 

Divide 

1 Element 

8 2 9 4 5 3 1 6 

5 

8 3 

1 

6   8   9 
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DETAILS 
Have not yet explained: 
 
How to pick the pivot element 

•  Any choice is correct: data will end up sorted 
•  But as analysis will show, want the two partitions to be about 

equal in size 
 

How to implement partitioning 
•  In linear time 
•  In place 


