
CSE 373
NOVEMBER 6TH – COMPARISON SORTS

EXAM RECAP
•  Overall, you did well

•  Average in the low 70s

EXAM RECAP
•  Overall, you did well

•  Average in the low 70s
•  Q3 was the tricky one

EXAM RECAP
•  Overall, you did well

•  Average in the low 70s
•  Q3 was the tricky one
•  AVL, Hashtables, Heaps, B-Trees

EXAM RECAP
•  Overall, you did well

•  Average in the low 70s
•  Q3 was the tricky one
•  AVL, Hashtables, Heaps, B-Trees
•  Analysis/short answer

EXAM RECAP
•  If you did poorly,

•  Email me about a meeting
•  Quarter isn’t over yet
•  Don’t wait until finals week

EXAM RECAP
•  Regrades

•  No office hours today
•  I will be in my office before class Wednesday

and Friday from 12:00-2:00 to handle
regrades

•  Come prepared with the exam and why you
think the grade is incorrect

•  TAs can help you with solutions or problems,
but I will make all grade changes

EXAM RECAP
•  Final Exam

•  Cumulative

EXAM RECAP
•  Final Exam

•  Cumulative
•  Less time pressure

EXAM RECAP
•  Final Exam

•  Cumulative
•  Less time pressure
•  More critical thought (but there will still be a

few procedural questions)

EXAM RECAP
•  Final Exam

•  Cumulative
•  Less time pressure
•  More critical thought (but there will still be a

few procedural questions)
•  Algorithm analysis

ASSORTED MINUTIAE
•  P2 grades to those who submitted

•  Grades by Wednesday for partners
•  Email me if you’re missing your feedback file

ASSORTED MINUTIAE
•  P2 grades to those who submitted

•  Grades by Wednesday for partners
•  Email me if you’re missing your feedback file

•  P3 out tonight

ASSORTED MINUTIAE
•  P2 grades to those who submitted

•  Grades by Wednesday for partners
•  Email me if you’re missing your feedback file

•  P3 out tonight
•  Part 1 due next Wednesday
•  Try to get ahead on the assignment

ASSORTED MINUTIAE
•  P2 grades to those who submitted

•  Grades by Wednesday for partners
•  Email me if you’re missing your feedback file

•  P3 out tonight
•  Part 1 due next Wednesday
•  Try to get ahead on the assignment
•  3 parts – only one written assignment left

ASSORTED MINUTIAE
•  Written assignments make up 10% of total

grade
•  Coding assignments make up 30% of total

grade (weighted per part)
•  Exam

•  Higher exam grade worth 35%
•  Lower exam grade worth 25%

SORTING

SORTING
•  Problem statement:

SORTING
•  Problem statement:

•  Given some collection of comparable data,
arrange them into an organized order

SORTING
•  Problem statement:

•  Given some collection of comparable data,
arrange them into an organized order

•  Important to note that you may be able to
“organize” the same data different ways

SORTING
•  Why sort at all?

SORTING
•  Why sort at all?

•  Data pre-processing

SORTING
•  Why sort at all?

•  Data pre-processing
•  If we do the work now, future operations may

be faster

SORTING
•  Why sort at all?

•  Data pre-processing
•  If we do the work now, future operations may

be faster
•  Unsorted v. Sorted Array, e.g.

SORTING
•  Why sort at all?

•  Data pre-processing
•  If we do the work now, future operations may

be faster
•  Unsorted v. Sorted Array, e.g.

•  Why not just maintain sortedness as we
add?

SORTING
•  Why sort at all?

•  Data pre-processing
•  If we do the work now, future operations may

be faster
•  Unsorted v. Sorted Array, e.g.

•  Why not just maintain sortedness as we
add?
•  Most times, if we can, we should

SORTING
•  Why sort at all?

•  Data pre-processing
•  If we do the work now, future operations may

be faster
•  Unsorted v. Sorted Array, e.g.

•  Why not just maintain sortedness as we
add?
•  Most times, if we can, we should
•  Why would we not be able to?

SORTING
•  Maintaining Sortedness v. Sorting

SORTING
•  Maintaining Sortedness v. Sorting

•  Why don’t we maintain sortedness?

SORTING
•  Maintaining Sortedness v. Sorting

•  Why don’t we maintain sortedness?
•  Data comes in batches

SORTING
•  Maintaining Sortedness v. Sorting

•  Why don’t we maintain sortedness?
•  Data comes in batches
•  Multiple “sorted” orders

SORTING
•  Maintaining Sortedness v. Sorting

•  Why don’t we maintain sortedness?
•  Data comes in batches
•  Multiple “sorted” orders
•  Costly to maintain!

SORTING
•  Maintaining Sortedness v. Sorting

•  Why don’t we maintain sortedness?
•  Data comes in batches
•  Multiple “sorted” orders
•  Costly to maintain!

•  We need to be sure that the effort is worth
the work

SORTING
•  Maintaining Sortedness v. Sorting

•  Why don’t we maintain sortedness?
•  Data comes in batches
•  Multiple “sorted” orders
•  Costly to maintain!

•  We need to be sure that the effort is worth
the work
•  No free lunch!

SORTING
•  Maintaining Sortedness v. Sorting

•  Why don’t we maintain sortedness?
•  Data comes in batches
•  Multiple “sorted” orders
•  Costly to maintain!

•  We need to be sure that the effort is worth
the work
•  No free lunch!

•  What does that even mean?

BOGO SORT
•  Consider the following sorting algorithm

BOGO SORT
•  Consider the following sorting algorithm

•  Shuffle the list into a random order

BOGO SORT
•  Consider the following sorting algorithm

•  Shuffle the list into a random order
•  Check if the list is sorted

BOGO SORT
•  Consider the following sorting algorithm

•  Shuffle the list into a random order
•  Check if the list is sorted,
•  if so return the list

BOGO SORT
•  Consider the following sorting algorithm

•  Shuffle the list into a random order
•  Check if the list is sorted,
•  if so return the list
•  if not, try again

BOGO SORT
•  Consider the following sorting algorithm

•  Shuffle the list into a random order
•  Check if the list is sorted,
•  if so return the list
•  if not, try again

•  What is the problem here?

BOGO SORT
•  Consider the following sorting algorithm

•  Shuffle the list into a random order
•  Check if the list is sorted,
•  if so return the list
•  if not, try again

•  What is the problem here?
•  Runtime!

BOGO SORT
•  Consider the following sorting algorithm

•  Shuffle the list into a random order
•  Check if the list is sorted,
•  if so return the list
•  if not, try again

•  What is the problem here?
•  Runtime! Average O(n!)!

BOGO SORT
•  Consider the following sorting algorithm

•  Shuffle the list into a random order
•  Check if the list is sorted,
•  if so return the list
•  if not, try again

•  What is the problem here?
•  Runtime! Average O(n!)!
•  Why is this so bad?

BOGO SORT
•  Consider the following sorting algorithm

•  Shuffle the list into a random order
•  Check if the list is sorted,
•  if so return the list
•  if not, try again

•  What is the problem here?
•  Runtime! Average O(n!)!
•  Why is this so bad?

•  The computer isn’t thinking, it’s just guess-and-
checking

SORTING
•  Guess-and-check

SORTING
•  Guess-and-check

•  Not a bad strategy when nothing else is obvious

SORTING
•  Guess-and-check

•  Not a bad strategy when nothing else is obvious
•  Breaking RSA

SORTING
•  Guess-and-check

•  Not a bad strategy when nothing else is obvious
•  Breaking RSA
•  Greedy-first algorithms

SORTING
•  Guess-and-check

•  Not a bad strategy when nothing else is obvious
•  Breaking RSA
•  Greedy-first algorithms
•  Midterms

SORTING
•  Guess-and-check

•  Not a bad strategy when nothing else is obvious
•  Breaking RSA
•  Greedy-first algorithms
•  Midterms

•  If you don’t have a lot of time, or if the payoff is
big, or if the chance of success is high, then it
might be a good strategy

SORTING
•  Guess-and-check

•  Not a bad strategy when nothing else is obvious
•  Breaking RSA
•  Greedy-first algorithms
•  Midterms

•  If you don’t have a lot of time, or if the payoff is
big, or if the chance of success is high, then it
might be a good strategy

•  Random/Approximized algs

SORTING
•  Why not guess-and-check for sorting?

SORTING
•  Why not guess-and-check for sorting?

•  Not taking advantage of the biggest constraint of
the problem

SORTING
•  Why not guess-and-check for sorting?

•  Not taking advantage of the biggest constraint of
the problem

•  Items must be comparable!

SORTING
•  Why not guess-and-check for sorting?

•  Not taking advantage of the biggest constraint of
the problem

•  Items must be comparable!
•  You should be comparing things!
•  Looking at two items next to each other tells a lot

about where they belong in the list, there’s no
reason not to use this information.

SORTING
•  Types of sorts

SORTING
•  Types of sorts

•  Comparison sorts

SORTING
•  Types of sorts

•  Comparison sorts
•  Bubble sort

SORTING
•  Types of sorts

•  Comparison sorts
•  Bubble sort
•  Insertion sort

SORTING
•  Types of sorts

•  Comparison sorts
•  Bubble sort
•  Insertion sort
•  Selection sort

SORTING
•  Types of sorts

•  Comparison sorts
•  Bubble sort
•  Insertion sort
•  Selection sort
•  Heap sort

SORTING
•  Types of sorts

•  Comparison sorts
•  Bubble sort
•  Insertion sort
•  Selection sort
•  Heap sort

•  “Other” sorts
•  Bucket sort – will talk about later

SORTING
•  Types of sorts

•  Comparison sorts
•  Bubble sort
•  Insertion sort
•  Selection sort
•  Heap sort

•  “Other” sorts
•  Bucket sort – will talk about later
•  Bogo sort

DEFINITION:
COMPARISON SORT

•  A computational problem with the following input and
output

•  Input:
•  An array A of length n comparable elements

•  Output:
•  The same array A, containing the same elements where:

•  for any i and j where 0 ≤ i < j < n
•  then A[i] ≤ A[j]

MORE REASONS TO
SORT

General technique in computing:
 Preprocess data to make subsequent operations faster

Example: Sort the data so that you can

•  Find the kth largest in constant time for any k
•  Perform binary search to find elements in logarithmic time

Whether the performance of the preprocessing matters depends
on

•  How often the data will change (and how much it will change)
•  How much data there is

MORE DEFINITIONS
In-Place Sort:

A sorting algorithm is in-place if it requires only O(1) extra
space to sort the array.

• Usually modifies input array
• Can be useful: lets us minimize memory

Stable Sort:
A sorting algorithm is stable if any equal items remain in the
same relative order before and after the sort.

•  Items that ’compare’ the same might not be exact duplicates
• Might want to sort on some, but not all attributes of an item
• Can be useful to sort on one attribute first, then another one

STABLE SORT EXAMPLE
Input:

[(8, "fox"), (9, "dog"), (4, "wolf"), (8, "cow")]!

Compare function: compare pairs by number only

Output (stable sort):
[(4, "wolf"), (8, "fox"), (8, "cow"), (9, "dog")]!

Output (unstable sort):

[(4, "wolf"), (8, "cow"), (8, "fox"), (9, "dog")]!

SORTING: THE BIG
PICTURE

Simple	
algorithms:	

O(n2)	

Fancier	
algorithms:	
O(n	 log	 n)	

Comparison	
lower	 bound:	
Ω(n	 log	 n)	

Specialized	
algorithms:	

O(n)	

Handling	
huge	 data	

sets	

Inser?on	 sort	
Selec?on	 sort	
Shell	 sort	
…

Heap	 sort	
Merge	 sort	
Quick	 sort	 (avg)	
…	

Bucket	 sort	
Radix	 sort	

External	
sor?ng	

INSERTION SORT

2 4 5 3 8 7 1 6

already
sorted

unsorted

current item

2 4 5 3 8 7 1 6

already
sorted

unsorted

2 3 4 5 8 7 1 6

already
sorted

unsorted

2 3 4 5 8 7 1 6

already
sorted

unsorted

insert where it belongs in
sorted section

shift other elements over and
already sorted section is now larger

new current item

1 2

3 4

INSERTION SORT
Idea: At step k, put the kth element in the correct position among the first k
elements
!

for (int i = 0; i < n; i++) {!
! !// Find index to insert into!
! !int newIndex = findPlace(i);!
! !// Insert and shift nodes over!
! !shift(newIndex, i);!
}!

What can we say about the list at loop i? first i elements are sorted
 (not necessarily lowest in the list)

Runtime?

71

INSERTION SORT
Idea: At step k, put the kth element in the correct position among the first k
elements
!

for (int i = 0; i < n; i++) {!
! !// Find index to insert into!
! !int newIndex = findPlace(i);!
! !// Insert and shift nodes over!
! !shift(newIndex, i);!
}!

What can we say about the list at loop i? first i elements are sorted
 (not necessarily lowest in the list)

Runtime? Best case: O(n), Worst case: O(n2) Why?

72

INSERTION SORT
Idea: At step k, put the kth element in the correct position among the first k
elements
!

for (int i = 0; i < n; i++) {!
! !// Find index to insert into!
! !int newIndex = findPlace(i);!
! !// Insert and shift nodes over!
! !shift(newIndex, i);!
}!

What can we say about the list at loop i? first i elements are sorted
 (not necessarily lowest in the list)

Runtime? Best case: O(n), Worst case: O(n2) Why?
Stable? In-place?

INSERTION SORT
Idea: At step k, put the kth element in the correct position among the first k
elements
!

for (int i = 0; i < n; i++) {!
! !// Find index to insert into!
! !int newIndex = findPlace(i);!
! !// Insert and shift nodes over!
! !shift(newIndex, i);!
}!

What can we say about the list at loop i? first i elements are sorted
 (not necessarily lowest in the list)

Runtime? Best case: O(n), Worst case: O(n2) Why?
Stable? Usually In-place? Yes

SELECTION SORT

1 2 3 7 8 6 4 5

already
sorted

unsorted

current index

1 2 3 4 8 6 7 5

already
sorted

unsorted

1 2 3 4 8 6 7 5

already
sorted

unsorted

now ‘already sorted’ section is one
larger

next
index

1 2

3 4

next smallest

1 2 3 7 8 6 4

already
sorted

unsorted

5

current index next smallest

swap

next smallest

SELECTION SORT
•  Can be interrupted (don’t need to sort the whole

array to get the first element)
•  Doesn’t need to mutate the original array (if the

array has some other sorted order)
•  Stable sort

INSERTION SORT VS.
SELECTION SORT
Have the same worst-case and average-case asymptotic
complexity

•  Insertion-sort has better best-case complexity; preferable
when input is “mostly sorted”

Useful for small arrays or for mostly sorted input

SORTING: THE BIG
PICTURE

Simple	
algorithms:	

O(n2)	

Fancier	
algorithms:	
O(n	 log	 n)	

Comparison	
lower	 bound:	
Ω(n	 log	 n)	

Specialized	
algorithms:	

O(n)	

Handling	
huge	 data	

sets	

Inser?on	 sort	
Selec?on	 sort	
Shell	 sort	
…

Heap	 sort	
Merge	 sort	
Quick	 sort	 (avg)	
…	

Bucket	 sort	
Radix	 sort	

External	
sor?ng	

NEXT CLASS
•  Fancier sorts!

NEXT CLASS
•  Fancier sorts!
•  How fancy can we get?

