
CSE 373 
NOVEMBER 1ST – EXAM REVIEW 



EXAM FRIDAY 
•  6-8 questions 

•  Q1 is short answer, but will have many parts. It may be 
best to save this for last 

•  Q2 is algorithm analysis 
•  AVL 
•  Hash tables 
•  Priority Queues/Heaps 



EXAM FRIDAY 
•  Topics 

•  Definitions 
•  Stacks and Queues 
•  Runtime Analysis 
•  Dictionaries 
•  BSTs 
•  Traversals 

•  AVL Trees 
•  Hash Tables 
•  Memory Hierarchy 
•  B+-trees 
•  Priority Queues 
•  Heaps 



DEFINITIONS 
•  Important terms 

•  Abstract Data Type 
•  Example: Dictionary 

•  Supports functions: insert, find, delete 
•  Has expected behavior 



DEFINITIONS 
•  Important terms 

•  Abstract Data Type 
•  Example: Dictionary 

•  Supports functions: insert, find, delete 
•  Has expected behavior 

•  Data Structure 
•  Language independent structure which 

implements an ADT 
•  Example: AVL tree 
•  Can be analyzed asymptotically 
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DEFINITIONS 
•  Important terms 

•  Implementation 
•  Low-level design decisions 
•  Language specific 

•  Example 
•  The Queue ADT supports enqueue, dequeue 

and front. 
•  Arrays and Linked Lists are examples of the 

data structures 
•  Implementation: front and back pointers 
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•  Queue: 
•  Supports: enqueue(), dequeue(), front() 
•  FIFO order 
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STACKS AND QUEUES 
•  Data structure choices 

•  Arrays and Linked Lists 
•  Considerations 

•  Memory usage 
•  Ease of implementation 
•  Resizing time 

•  Runtimes: 
•  O(1) for all functions 
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RUNTIME ANALYSIS 
•  Counting the number of operations 

•  Comparisons, mathematical operations, assignments  
•  For loops and while statements 

•  Count the number of times relevant code is executed 
•  Important summations 

•  Sum of all numbers from 1 to n 
•  Sum of the powers of two 
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•  Best-case, worst-case, average-case 
•  Usually we discuss worst-case complexity 
•  If we increase the input size, how does the 

computation time change 



RUNTIME ANALYSIS 
•  Asymptotic Analysis 

•  Best-case, worst-case, average-case 
•  Usually we discuss worst-case complexity 
•  If we increase the input size, how does the 

computation time change 
•  BigO notation 

•  Upper bound for a given function 
•  f(n) = O(g(n) if there exists a c and n0 for which 

f(n) < c*g(n) for all n > n0 



RUNTIME ANALYSIS 
•  Recurrences 

•  Analysis of recursive functions 
•  Break the function into recursive and non-recursive 
•  Produce the recurrence relation 
•  Roll out the recurrence or produce the recurrence tree 
•  Find the closed form of the recurrence 
•  Upper bound this recurrence with a bigO bound. 



RUNTIME ANALYSIS 
•  Amortized analysis 

•  Used when an expensive operation occurs with 
predictable frequency (e.g. resizing an array) 

•  Describe the state of the data structure 
•  Indicate the number of operations 
•  Determine how many are the costly operation and how 

many are the cheap operations 
•  # of costly * costly runtime + # cheap * cheap runtime 
•  Divide by the number of operations 



RUNTIME ANALYSIS 
•  Memory analysis 

•  Calculating how much memory an algorithm needs 
•  This is in addition to the data itself 
•  Think about any secondary data structures you might 

use 
•  Also, remember that recursive functions consume 

memory on the call stack 



RUNTIME ANALYSIS 
•  Basic ideas 

•  If we increase the size of the input by one, how does 
our total computation change? 



RUNTIME ANALYSIS 
•  Basic ideas 

•  O(1): Input size has no effect on runtime 
•  O(log n): doubling the input increases the runtime by 

some constant amount 
•  O(n): linear time, each additional input increases 

execution time by a constant amount 
•  O(n2): doubling the input increases the runtime by a 

factor of 4. 
•  O(2n): exponential, increasing the input by one 

doublies the runtime 
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•  Supports the following functions 
•  Insert(key k, value v) 
•  find(key k) 
•  delete(key k) 



DICTIONARIES 
•  ADT 

•  Supports the following functions 
•  Insert(key k, value v) 
•  find(key k) 
•  delete(key k) 

•  Data is stored in key, value pairs 
•  In this course, duplicate keys are not allowed 
•  Most data structures can implement a dictionary 
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•  Binary trees 
•  Nodes with two children 
•  Maintains search property 

•  All values in the left subtree must be less than the parent 
•  All values in the right subtree must be greater than the 

parent 



BINARY SEARCH TREES 
•  Binary trees 
•  Nodes with two children 
•  Maintains search property 

•  All values in the left subtree must be less than the parent 
•  All values in the right subtree must be greater than the 

parent 
•  With each increase in height, the number of nodes in a tree 

roughly doubles 
•  A perfect tree has 2h+1-1 nodes  
•  Roughly half of a binary search tree are leaves 
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TRAVERSALS 
•  Two main traversal families 

•  Depth First Search 
•  Breadth First Search 

•  DFS 
•  Usually implemented recursively 
•  Whether the parent is processed before, after or in the 

middle of its children determines if the traversal is pre-order, 
post-order or in-order respectively 

•  BFS 

•  Put the root into a queue 
•  Dequeue a node, process it and enqueue its children 
•  Top to bottom left to right traversal 
•  Queue is largest at the widest part of the tree 



AVL TREES 
•  Specific type of binary search tree 
•  Still must implement binary search 
•  Nodes in AVL trees have two extra fields, height and 

balance 
•  Balance = | height(left) – height(right) | 
•  Balance for each node must be less than or equal to 1 
•  Trees with this condition still have O(log n) height 
•  No covering delete in this course 
•  Find: O(log n): Insert O(log n) 



AVL ROTATIONS 
•  AVL Rotations occur when an insertion makes a node 

out of balance 
•  Relative to the node that is unbalanced, there are four 

rotations depending on which grandchild received the new 
node. 

•  Left-left and right right rotations involve the child of the 
affected node being rotated up into position 

•  Left-right and right-left rotations involve the grandchild being 
rotated up into position. The grandparent and parent 
become the two children 

•  It is important that these rotations preserve BST property 



HASH TABLES 
•  A large data set M with a smaller set that should be 

saved, D 

•  A hash function maps M onto D 
•  It should run in O(1) time 
•  It should distribute into all of the available spots evenly 

•  Hashtables provide O(1) runtime IF 
•  Collisions are not a problem 
•  Decrease the chance of collisions by increasing the 

amount of memory (load factor) 
•  Resizing is costly 



COLLISIONS 
•  Probing 

•  Linear probing 
•  Try the appropriate hash table row first 
•  Increase the index by one until a spot is 

found 
•  Guaranteed to find a spot if it is available 
•  If the array is too full, its operations reach 

O(n) time. Primary clustering 



COLLISIONS 
•  Probing 

•  Quadratic Probing 
•  Rather than increasing by one each time, we 

increase by the squares 
•  k+1, k+4, k+9, k+16, k+25 
•  Certain tables can cause secondary 

clustering 
•  Can fail to insert if the table is over half full 



COLLISIONS 
•  Probing 

•  Secondary Hashing 
•  If two keys collide in the hash table, then a 

secondary hash indicates the probing size 
•  Need to be careful, possible for infinite loops with a 

very empty array 
•  If the secondary hash value and the table size are 

coprime (they share no factors), then secondary 
hashing will succeed if there is an open space 

•  If table size is prime, only need to check if hash is a 
multiple 



COLLISIONS 
•  Chaining 

•  Rather than probing for an open position, we 
could just save multiple objects in the same 
position 

•  Some data structure is necessary here 
•  Commonly: a linked list, AVL tree or secondary 

hash table. 
•  Resizing isn’t necessary, but if you don’t, you 

will get O(n) runtime. 



MEMORY HIERARCHY 
•  Memory is not uniformly accessible 

•  OS manages access to computer resources 
•  Some memory is on disk and some is in cache 
•  Dictated by two types of behavior 

•  Spatial locality – Items near each other are 
moved together (memory pages) 

•  Temporal locality – memory used recently will 
be used again 



B-TREES 
•  To reduce disk accesses we introduce the 

B-tree 
•  Two types of nodes 

•  Signposts: Have M pointers and M-1 keys 
•  Leaves: Have L <K,V> Pairs and a pointer to the next leaf 

•  Signposts must have at least M/2 pointers and leaves must 
have at least L/2 data points, unless it is the root 

•  Keys in signposts are the smallest item in the next pointer 



B-TREES 
•  Insertion 

•  Find the leaf that should hold the inserted element 
•  Insert the new k,v pair in sorted order in the leaf node 
•  If it overflows (i.e. the leaf is full when inserted) 

•  Split the leaf into two nodes and add the new leaf to the 
parent 

•  If the signpost overflows, split the signpost into two 
signposts and try to add the new signpost to the parent 

•  Split back up to the root and create a new root if necessary 



HEAPS 
•  Priority Queue ADT 

•  Supports: insert(), findMin(), deleteMin(), 
changePriority() 

•  Data is stored in priority, value pairs 
•  In this class, we use the min-heap, where a lower 

value means it should dequeue first 
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•  Implementation 
•  Array 
•  Find parents/children arithmetically 
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•  ChangePriority: O(log n) 



HEAPS 
•  Data Structure 

•  Heap 
•  Complete binary tree 
•  Heap property 

•  Implementation 
•  Array 
•  Find parents/children arithmetically 

•  Runtimes 
•  Insert: O(log n), findMin: O(1), deleteMin O(log n) 
•  ChangePriority: O(log n) 
•  buildHeap, O(n) 



HEAPS 
•  Percolate up 

•  After you’ve inserted an element in the next location in 
order to preserve completeness 

•  Compare the current element against its parent 
•  Swap if the child is less than the parent 
•  Repeat until the child is greater than the parent or the 

new element is swapped up to the root 



HEAPS 
•  Percolate down 

•  After deleting an element, move the last element 
(from completeness) up to the root 

•  Compare the current node against both of its 
children 

•  Swap the node with the smaller child provided the 
child is still smaller than the parent 

•  Continue until the node is smaller than both 
children, or it is a leaf. 



HEAPS 
•  Floyd’s method 

•  For each element in the array from size/2 to the first 
element 

•  Percolate that element down as much as necessary 
•  Because most elements are near the bottom, they do 

not need to percolate down very far, this results in 
O(n) overall runtime 



GOOD LUCK! 
•  Practice Exam solution tomorrow 
•  Review in section tomorrow 
•  Email/Piazza any questions 
•  No office hours Friday or next Monday 
•  Grades back in class on Monday 

 


