
CSE 373
NOVEMBER 1ST – EXAM REVIEW

EXAM FRIDAY
•  6-8 questions

•  Q1 is short answer, but will have many parts. It may be
best to save this for last

•  Q2 is algorithm analysis
•  AVL
•  Hash tables
•  Priority Queues/Heaps

EXAM FRIDAY
•  Topics

•  Definitions
•  Stacks and Queues
•  Runtime Analysis
•  Dictionaries
•  BSTs
•  Traversals

•  AVL Trees
•  Hash Tables
•  Memory Hierarchy
•  B+-trees
•  Priority Queues
•  Heaps

DEFINITIONS
•  Important terms

•  Abstract Data Type
•  Example: Dictionary

•  Supports functions: insert, find, delete
•  Has expected behavior

DEFINITIONS
•  Important terms

•  Abstract Data Type
•  Example: Dictionary

•  Supports functions: insert, find, delete
•  Has expected behavior

•  Data Structure
•  Language independent structure which

implements an ADT
•  Example: AVL tree
•  Can be analyzed asymptotically

DEFINITIONS
•  Important terms

•  Implementation
•  Low-level design decisions
•  Language specific

DEFINITIONS
•  Important terms

•  Implementation
•  Low-level design decisions
•  Language specific

•  Example
•  The Queue ADT supports enqueue, dequeue

and front.
•  Arrays and Linked Lists are examples of the

data structures
•  Implementation: front and back pointers

STACKS AND QUEUES
•  Our first two ADTs

•  Stack:
•  Supports: push(), pop(), top()
•  LIFO order

STACKS AND QUEUES
•  Our first two ADTs

•  Stack:
•  Supports: push(), pop(), top()
•  LIFO order

•  Queue:
•  Supports: enqueue(), dequeue(), front()
•  FIFO order

STACKS AND QUEUES
•  Data structure choices

•  Arrays and Linked Lists

STACKS AND QUEUES
•  Data structure choices

•  Arrays and Linked Lists
•  Considerations

•  Memory usage
•  Ease of implementation
•  Resizing time

STACKS AND QUEUES
•  Data structure choices

•  Arrays and Linked Lists
•  Considerations

•  Memory usage
•  Ease of implementation
•  Resizing time

•  Runtimes:
•  O(1) for all functions

RUNTIME ANALYSIS
•  Counting the number of operations

•  Comparisons, mathematical operations, assignments

RUNTIME ANALYSIS
•  Counting the number of operations

•  Comparisons, mathematical operations, assignments
•  For loops and while statements

•  Count the number of times relevant code is executed

RUNTIME ANALYSIS
•  Counting the number of operations

•  Comparisons, mathematical operations, assignments
•  For loops and while statements

•  Count the number of times relevant code is executed
•  Important summations

•  Sum of all numbers from 1 to n
•  Sum of the powers of two

RUNTIME ANALYSIS
•  Asymptotic Analysis

•  Best-case, worst-case, average-case
•  Usually we discuss worst-case complexity
•  If we increase the input size, how does the

computation time change

RUNTIME ANALYSIS
•  Asymptotic Analysis

•  Best-case, worst-case, average-case
•  Usually we discuss worst-case complexity
•  If we increase the input size, how does the

computation time change
•  BigO notation

•  Upper bound for a given function
•  f(n) = O(g(n) if there exists a c and n0 for which

f(n) < c*g(n) for all n > n0

RUNTIME ANALYSIS
•  Recurrences

•  Analysis of recursive functions
•  Break the function into recursive and non-recursive
•  Produce the recurrence relation
•  Roll out the recurrence or produce the recurrence tree
•  Find the closed form of the recurrence
•  Upper bound this recurrence with a bigO bound.

RUNTIME ANALYSIS
•  Amortized analysis

•  Used when an expensive operation occurs with
predictable frequency (e.g. resizing an array)

•  Describe the state of the data structure
•  Indicate the number of operations
•  Determine how many are the costly operation and how

many are the cheap operations
•  # of costly * costly runtime + # cheap * cheap runtime
•  Divide by the number of operations

RUNTIME ANALYSIS
•  Memory analysis

•  Calculating how much memory an algorithm needs
•  This is in addition to the data itself
•  Think about any secondary data structures you might

use
•  Also, remember that recursive functions consume

memory on the call stack

RUNTIME ANALYSIS
•  Basic ideas

•  If we increase the size of the input by one, how does
our total computation change?

RUNTIME ANALYSIS
•  Basic ideas

•  O(1): Input size has no effect on runtime
•  O(log n): doubling the input increases the runtime by

some constant amount
•  O(n): linear time, each additional input increases

execution time by a constant amount
•  O(n2): doubling the input increases the runtime by a

factor of 4.
•  O(2n): exponential, increasing the input by one

doublies the runtime

DICTIONARIES
•  ADT

•  Supports the following functions
•  Insert(key k, value v)
•  find(key k)
•  delete(key k)

DICTIONARIES
•  ADT

•  Supports the following functions
•  Insert(key k, value v)
•  find(key k)
•  delete(key k)

•  Data is stored in key, value pairs
•  In this course, duplicate keys are not allowed
•  Most data structures can implement a dictionary

BINARY SEARCH TREES
•  Binary trees
•  Nodes with two children
•  Maintains search property

•  All values in the left subtree must be less than the parent
•  All values in the right subtree must be greater than the

parent

BINARY SEARCH TREES
•  Binary trees
•  Nodes with two children
•  Maintains search property

•  All values in the left subtree must be less than the parent
•  All values in the right subtree must be greater than the

parent
•  With each increase in height, the number of nodes in a tree

roughly doubles
•  A perfect tree has 2h+1-1 nodes
•  Roughly half of a binary search tree are leaves

TRAVERSALS
•  Two main traversal families

•  Depth First Search
•  Breadth First Search

TRAVERSALS
•  Two main traversal families

•  Depth First Search
•  Breadth First Search

•  DFS
•  Usually implemented recursively
•  Whether the parent is processed before, after or in the

middle of its children determines if the traversal is pre-order,
post-order or in-order respectively

TRAVERSALS
•  Two main traversal families

•  Depth First Search
•  Breadth First Search

•  DFS
•  Usually implemented recursively
•  Whether the parent is processed before, after or in the

middle of its children determines if the traversal is pre-order,
post-order or in-order respectively

•  BFS

•  Put the root into a queue
•  Dequeue a node, process it and enqueue its children
•  Top to bottom left to right traversal
•  Queue is largest at the widest part of the tree

AVL TREES
•  Specific type of binary search tree
•  Still must implement binary search
•  Nodes in AVL trees have two extra fields, height and

balance
•  Balance = | height(left) – height(right) |
•  Balance for each node must be less than or equal to 1
•  Trees with this condition still have O(log n) height
•  No covering delete in this course
•  Find: O(log n): Insert O(log n)

AVL ROTATIONS
•  AVL Rotations occur when an insertion makes a node

out of balance
•  Relative to the node that is unbalanced, there are four

rotations depending on which grandchild received the new
node.

•  Left-left and right right rotations involve the child of the
affected node being rotated up into position

•  Left-right and right-left rotations involve the grandchild being
rotated up into position. The grandparent and parent
become the two children

•  It is important that these rotations preserve BST property

HASH TABLES
•  A large data set M with a smaller set that should be

saved, D

•  A hash function maps M onto D
•  It should run in O(1) time
•  It should distribute into all of the available spots evenly

•  Hashtables provide O(1) runtime IF
•  Collisions are not a problem
•  Decrease the chance of collisions by increasing the

amount of memory (load factor)
•  Resizing is costly

COLLISIONS
•  Probing

•  Linear probing
•  Try the appropriate hash table row first
•  Increase the index by one until a spot is

found
•  Guaranteed to find a spot if it is available
•  If the array is too full, its operations reach

O(n) time. Primary clustering

COLLISIONS
•  Probing

•  Quadratic Probing
•  Rather than increasing by one each time, we

increase by the squares
•  k+1, k+4, k+9, k+16, k+25
•  Certain tables can cause secondary

clustering
•  Can fail to insert if the table is over half full

COLLISIONS
•  Probing

•  Secondary Hashing
•  If two keys collide in the hash table, then a

secondary hash indicates the probing size
•  Need to be careful, possible for infinite loops with a

very empty array
•  If the secondary hash value and the table size are

coprime (they share no factors), then secondary
hashing will succeed if there is an open space

•  If table size is prime, only need to check if hash is a
multiple

COLLISIONS
•  Chaining

•  Rather than probing for an open position, we
could just save multiple objects in the same
position

•  Some data structure is necessary here
•  Commonly: a linked list, AVL tree or secondary

hash table.
•  Resizing isn’t necessary, but if you don’t, you

will get O(n) runtime.

MEMORY HIERARCHY
•  Memory is not uniformly accessible

•  OS manages access to computer resources
•  Some memory is on disk and some is in cache
•  Dictated by two types of behavior

•  Spatial locality – Items near each other are
moved together (memory pages)

•  Temporal locality – memory used recently will
be used again

B-TREES
•  To reduce disk accesses we introduce the

B-tree
•  Two types of nodes

•  Signposts: Have M pointers and M-1 keys
•  Leaves: Have L <K,V> Pairs and a pointer to the next leaf

•  Signposts must have at least M/2 pointers and leaves must
have at least L/2 data points, unless it is the root

•  Keys in signposts are the smallest item in the next pointer

B-TREES
•  Insertion

•  Find the leaf that should hold the inserted element
•  Insert the new k,v pair in sorted order in the leaf node
•  If it overflows (i.e. the leaf is full when inserted)

•  Split the leaf into two nodes and add the new leaf to the
parent

•  If the signpost overflows, split the signpost into two
signposts and try to add the new signpost to the parent

•  Split back up to the root and create a new root if necessary

HEAPS
•  Priority Queue ADT

•  Supports: insert(), findMin(), deleteMin(),
changePriority()

•  Data is stored in priority, value pairs
•  In this class, we use the min-heap, where a lower

value means it should dequeue first

HEAPS
•  Data Structure

•  Heap
•  Complete binary tree
•  Heap property

HEAPS
•  Data Structure

•  Heap
•  Complete binary tree
•  Heap property

•  Implementation
•  Array
•  Find parents/children arithmetically

HEAPS
•  Data Structure

•  Heap
•  Complete binary tree
•  Heap property

•  Implementation
•  Array
•  Find parents/children arithmetically

•  Runtimes
•  Insert: O(log n), findMin: O(1), deleteMin O(log n)
•  ChangePriority: O(log n)

HEAPS
•  Data Structure

•  Heap
•  Complete binary tree
•  Heap property

•  Implementation
•  Array
•  Find parents/children arithmetically

•  Runtimes
•  Insert: O(log n), findMin: O(1), deleteMin O(log n)
•  ChangePriority: O(log n)
•  buildHeap, O(n)

HEAPS
•  Percolate up

•  After you’ve inserted an element in the next location in
order to preserve completeness

•  Compare the current element against its parent
•  Swap if the child is less than the parent
•  Repeat until the child is greater than the parent or the

new element is swapped up to the root

HEAPS
•  Percolate down

•  After deleting an element, move the last element
(from completeness) up to the root

•  Compare the current node against both of its
children

•  Swap the node with the smaller child provided the
child is still smaller than the parent

•  Continue until the node is smaller than both
children, or it is a leaf.

HEAPS
•  Floyd’s method

•  For each element in the array from size/2 to the first
element

•  Percolate that element down as much as necessary
•  Because most elements are near the bottom, they do

not need to percolate down very far, this results in
O(n) overall runtime

GOOD LUCK!
•  Practice Exam solution tomorrow
•  Review in section tomorrow
•  Email/Piazza any questions
•  No office hours Friday or next Monday
•  Grades back in class on Monday

