CSE 373

NOVEMBER 15T - EXAM REVIEW

EXAM FRIDAY

* 6-8 questions
* Q1 is short answer, but will have many parts. It may be
best to save this for last
« Q2 is algorithm analysis
« AVL
* Hash tables
* Priority Queues/Heaps

EXAM FRIDAY

 Topics

Definitions

Stacks and Queues
Runtime Analysis
Dictionaries

BSTs

Traversals

AVL Trees

Hash Tables
Memory Hierarchy
B+-trees

Priority Queues
Heaps

DEFINITIONS

* Important terms

» Abstract Data Type
- Example: Dictionary
« Supports functions: insert, find, delete
« Has expected behavior

DEFINITIONS

* Important terms

» Abstract Data Type
- Example: Dictionary
« Supports functions: insert, find, delete
« Has expected behavior

« Data Structure

* Language independent structure which
Implements an ADT

 Example: AVL tree
« Can be analyzed asymptotically

DEFINITIONS

* Important terms

* |Implementation
- Low-level design decisions
« Language specific

DEFINITIONS

* Important terms

* |Implementation
- Low-level design decisions
« Language specific
 Example
* The Queue ADT supports enqueue, dequeue
and front.

* Arrays and Linked Lists are examples of the
data structures

« Implementation: front and back pointers

STACKS AND QUEUES

 Our first two ADTs
« Stack:

» Supports: push(), pop(), top()
* LIFO order

STACKS AND QUEUES

 Our first two ADTs
« Stack:

» Supports: push(), pop(), top()
* LIFO order

 Queue:

» Supports: enqueue(), dequeue(), front()
* FIFO order

STACKS AND QUEUES

 Data structure choices
* Arrays and Linked Lists

STACKS AND QUEUES

 Data structure choices

* Arrays and Linked Lists

» Considerations
* Memory usage
« Ease of implementation
* Resizing time

STACKS AND QUEUES

 Data structure choices

* Arrays and Linked Lists
» Considerations
* Memory usage
« Ease of implementation
* Resizing time
* Runtimes:
* O(1) for all functions

RUNTIME ANALYSIS

 Counting the number of operations

« Comparisons, mathematical operations, assignments

RUNTIME ANALYSIS

 Counting the number of operations

« Comparisons, mathematical operations, assignments
 For loops and while statements

 Count the number of times relevant code is executed

RUNTIME ANALYSIS

 Counting the number of operations

« Comparisons, mathematical operations, assignments
 For loops and while statements

« Count the number of times relevant code is executed
* Important summations

* Sum of all numbers from 1 to n
« Sum of the powers of two

RUNTIME ANALYSIS

 Asymptotic Analysis

Best-case, worst-case, average-case
Usually we discuss worst-case complexity

If we increase the input size, how does the
computation time change

RUNTIME ANALYSIS

 Asymptotic Analysis
- Best-case, worst-case, average-case

« Usually we discuss worst-case complexity

* If we increase the input size, how does the
computation time change

« BigO notation

« Upper bound for a given function

« f(n) = O(g(n) if there exists a c and n, for which
f(n) < c*g(n) forall n >n,

RUNTIME ANALYSIS

* Recurrences

« Analysis of recursive functions

* Break the function into recursive and non-recursive

* Produce the recurrence relation

* Roll out the recurrence or produce the recurrence tree
* Find the closed form of the recurrence

» Upper bound this recurrence with a bigO bound.

RUNTIME ANALYSIS

« Amortized analysis
- Used when an expensive operation occurs with
predictable frequency (e.g. resizing an array)
« Describe the state of the data structure
* |Indicate the number of operations

« Determine how many are the costly operation and how
many are the cheap operations

« # of costly * costly runtime + # cheap * cheap runtime
 Divide by the number of operations

RUNTIME ANALYSIS

 Memory analysis

 Calculating how much memory an algorithm needs
« This is in addition to the data itself

« Think about any secondary data structures you might
use

* Also, remember that recursive functions consume
memory on the call stack

RUNTIME ANALYSIS

« Basic ideas

 If we increase the size of the input by one, how does
our total computation change?

RUNTIME ANALYSIS

Basic ideas

O(1): Input size has no effect on runtime

O(log n): doubling the input increases the runtime by
some constant amount

O(n): linear time, each additional input increases
execution time by a constant amount

O(n?): doubling the input increases the runtime by a
factor of 4.

O(2"): exponential, increasing the input by one
doublies the runtime

DICTIONARIES

« ADT

Supports the following functions
Insert(key k, value v)
find(key k)
delete(key k)

DICTIONARIES

« ADT

« Supports the following functions
Insert(key k, value v)
find(key k)
« delete(key k)
- Data is stored in key, value pairs
* In this course, duplicate keys are not allowed

« Most data structures can implement a dictionary

BINARY SEARCH TREES

* Binary trees
* Nodes with two children

 Maintains search property

* All values in the left subtree must be less than the parent

» All values in the right subtree must be greater than the
parent

BINARY SEARCH TREES

* Binary trees
* Nodes with two children

 Maintains search property

* All values in the left subtree must be less than the parent

» All values in the right subtree must be greater than the
parent

« With each increase in height, the number of nodes in a tree
roughly doubles

« A perfect tree has 2"*1-1 nodes

 Roughly half of a binary search tree are leaves

TRAVERSALS

« Two main traversal families

Depth First Search
Breadth First Search

TRAVERSALS

« Two main traversal families

« Depth First Search
* Breadth First Search
 DFS

» Usually implemented recursively

« Whether the parent is processed before, after or in the
middle of its children determines if the traversal is pre-order,
post-order or in-order respectively

TRAVERSALS

« Two main traversal families

« Depth First Search
* Breadth First Search
 DFS

» Usually implemented recursively

« Whether the parent is processed before, after or in the
middle of its children determines if the traversal is pre-order,
post-order or in-order respectively

« BFS

« Put the root into a queue

 Dequeue a node, process it and enqueue its children
« Top to bottom left to right traversal

* Queue is largest at the widest part of the tree

AVL TREES

« Specific type of binary search tree
« Still must implement binary search

 Nodes in AVL trees have two extra fields, height and
balance

« Balance = | height(left) — height(right) |

« Balance for each node must be less than or equal to 1
« Trees with this condition still have O(log n) height
 No covering delete in this course

* Find: O(log n): Insert O(log n)

AVL ROTATIONS

« AVL Rotations occur when an insertion makes a node
out of balance

« Relative to the node that is unbalanced, there are four
rotations depending on which grandchild received the new
node.

« Left-left and right right rotations involve the child of the
affected node being rotated up into position

« Left-right and right-left rotations involve the grandchild being
rotated up into position. The grandparent and parent
become the two children

* |tis important that these rotations preserve BST property

HASH TABLES

 Alarge data set M with a smaller set that should be
saved, D

* A hash function maps M onto D

* It should runin O(1) time
It should distribute into all of the available spots evenly
« Hashtables provide O(1) runtime IF

« Collisions are not a problem

* Decrease the chance of collisions by increasing the
amount of memory (load factor)

Resizing is costly

COLLISIONS
* Probing

 Linear probing

Try the appropriate hash table row first

Increase the index by one until a spot is
found

Guaranteed to find a spot if it is available

If the array is too full, its operations reach
O(n) time. Primary clustering

COLLISIONS

* Probing
* Quadratic Probing

- Rather than increasing by one each time, we
Increase by the squares

« k+1, k+4, k+9, k+16, k+25

» Certain tables can cause secondary
clustering

« Can fail to insert if the table is over half full

COLLISIONS

* Probing
* Secondary Hashing

 If two keys collide in the hash table, then a
secondary hash indicates the probing size

* Need to be careful, possible for infinite loops with a
very empty array
- If the secondary hash value and the table size are

coprime (they share no factors), then secondary
hashing will succeed if there is an open space

 |f table size is prime, only need to check if hash is a
multiple

COLLISIONS
« Chaining

Rather than probing for an open position, we
could just save multiple objects in the same
position

Some data structure is necessary here

Commonly: a linked list, AVL tree or secondary
hash table.

Resizing isn’t necessary, but if you don’t, you
will get O(n) runtime.

MEMORY HIERARCHY

 Memory is not uniformly accessible

* OS manages access to computer resources
* Some memory is on disk and some is in cache
* Dictated by two types of behavior

- Spatial locality — Items near each other are
moved together (memory pages)

« Temporal locality — memory used recently will
be used again

B-TREES

 To reduce disk accesses we introduce the
B-tree

« Two types of nodes
Signposts: Have M pointers and M-1 keys
Leaves: Have L <K,V> Pairs and a pointer to the next leaf

« Signposts must have at least M/2 pointers and leaves must
have at least L/2 data points, unless it is the root

« Keys in signposts are the smallest item in the next pointer

B-TREES

 Insertion

Find the leaf that should hold the inserted element
Insert the new Kk,v pair in sorted order in the leaf node

If it overflows (i.e. the leaf is full when inserted)

Split the leaf into two nodes and add the new leaf to the
parent

If the signpost overflows, split the signpost into two
signposts and try to add the new signpost to the parent

Split back up to the root and create a new root if necessary

HEAPS

* Priority Queue ADT

« Supports: insert(), findMin(), deleteMin(),
changePriority()
» Data is stored in priority, value pairs

* In this class, we use the min-heap, where a lower
value means it should dequeue first

HEAPS

 Data Structure

* Heap
« Complete binary tree
* Heap property

HEAPS

 Data Structure

* Heap
« Complete binary tree
* Heap property
* Implementation
* Array
* Find parents/children arithmetically

HEAPS

 Data Structure

* Heap
« Complete binary tree
* Heap property
* Implementation
* Array
* Find parents/children arithmetically
* Runtimes
 Insert: O(log n), findMin: O(1), deleteMin O(log n)
« ChangePriority: O(log n)

HEAPS

 Data Structure

* Heap
« Complete binary tree
* Heap property
* Implementation
* Array
* Find parents/children arithmetically
* Runtimes
 Insert: O(log n), findMin: O(1), deleteMin O(log n)
« ChangePriority: O(log n)
* buildHeap, O(n)

HEAPS

 Percolate up

After you've inserted an element in the next location in
order to preserve completeness

Compare the current element against its parent
Swap if the child is less than the parent

Repeat until the child is greater than the parent or the
new element is swapped up to the root

HEAPS

 Percolate down

After deleting an element, move the last element
(from completeness) up to the root

Compare the current node against both of its
children

Swap the node with the smaller child provided the
child is still smaller than the parent

Continue until the node is smaller than both
children, or it is a leaf.

HEAPS
* Floyd’s method

* For each element in the array from size/2 to the first
element

« Percolate that element down as much as necessary

* Because most elements are near the bottom, they do
not need to percolate down very far, this results in
O(n) overall runtime

GOOD LUCK!

* Practice Exam solution tomorrow

« Review in section tomorrow

Email/Piazza any questions

No office hours Friday or next Monday

Grades back in class on Monday

