ADMINISTRIVIA

• Practice exam out by tomorrow
• P1 EC graded by tonight
• P2 graded on Wednesday
• HW regrades tonight
 • Please fill out the form if you have regrade questions.
MIDTERM EXAM

• Friday, November 3rd, 2:30-3:20
• No note sheets or calculators
• Exam review in class on Wednesday
• Covers everything through the end of today’s lecture
PRIORITY QUEUE

• New ADT
• Objects in the priority queue have:
 • Data
 • Priority
• Conditions
 • Lower priority items should dequeue first
 • Should be able to change priority of an item
 • FIFO for equal priority?
PRIORITY QUEUE

• `insert(K key, int priority)`
 • Insert the key into the PQ with given priority

• `findMin()`
 • Return the key that currently has lowest priority in the PQ (min-heap)

• `deleteMin()`
 • Return and remove the key with lowest priority

• `changePriority(K key, int newPri)`
 • Assign a new priority to the object key
PRIORITY QUEUE

• How to implement?
 • Keep data sorted (somehow)

• Array?
 • Inserting into the middle is costly (must move other items)

• Linked list?
 • Must iterate through entire list to find place
 • Cannot move backward if priority changes
PRIORITY QUEUE

- These data structures will all give us the behavior we want as far as the ADT, but they may be poor design decisions
- Any other data structures to try?
PRIORITY QUEUE

• Want the speed of trees (but not BST)
• Priority Queue has unique demands
• Other types of trees?
• Review BST first
PROPERTIES (BST)

• Tree (Binary)
 • Root
 • (Two) Children
 • No cycles

• Search
 • Comparable data
 • Left child data < parent data
 • Smallest child is at the left most node
PROPERTIES (BST)

• Binary tree may be useful
• Search property doesn’t help
 • Always deleting min
 • Put min on top!
HEAP-ORDER PROPERTY

• Still a binary tree

• Instead of search (left < parent),
 parent should be less than children
HEAP-ORDER PROPERTY

• Still a binary tree
• Instead of search (left < parent), parent should be less than children
• How to implement?
• Insert and delete are different than BST
HEAP-ORDER PROPERTY

• Still a binary tree

• Instead of search (left < parent), parent should be less than children

• How to implement?

• Insert and delete are different than BST
HEAPS

• The Priority Queue is the ADT
• The Heap is the Data Structure
Filling left to right and top to bottom is another property - completeness
HEAP EXAMPLE
HEAPS

• Heap property (parents < children)
• Complete tree property (left to right, bottom to top)
HEAPS

• Heap property (parents < children)
• Complete tree property (left to right, bottom to top)
• How does this help?
 • Array implementation
HEAPS

• Insert into array from left to right
• For any parent at index i, children at $2i+1$ and $2i+2$
• Array property

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
HEAPS

• How to maintain heap property then?
 • Parent must be higher priority than children

• Two functions – percolate up and percolate down
HEAP FUNCTIONS

• Percolate up
 • When a new item is inserted:
 • Place the item at the next position to preserve completeness
 • Swap the item up the tree until it is larger than its parent
HEAP FUNCTIONS

• Percolate down
 • When an item is deleted:
 • Remove the root of the tree (to be returned)
 • Move the last object in the tree to the root
 • Swap the moved piece down while it is larger than it’s smallest child
 • Only swap with the smallest child
HEAPS AS ARRAYS

• Because heaps are complete, they can be represented as arrays without any gaps in them.

• Naïve implementation:
 • Left child: 2*i+1
 • Right child: 2*i + 2
 • Parent: (i-1)/2
HEAPS AS ARRAYS

• Alternate (common) implementation:
 • Put the root of the array at index 1
 • Leave index 0 blank
 • Calculating children/parent becomes:
 • Left child: 2*i
 • Right child: 2*i + 1
 • Parent: i/2
HEAPS AS ARRAYS

• Why do an array at all?
 • + Memory efficiency
 • + Fast accesses to data
 • + Forces log n depth
 • - Needs to resize
 • - Can waste space

• Almost always done through an array
ANALYSIS

• Let’s find an interesting algorithm to analyze
ANALYSIS

• Let’s find an interesting algorithm to analyze

• Given an array of length n, how do we make that array into a heap?
ANALYSIS

• Let’s find an interesting algorithm to analyze

• Given an array of length n, how do we make that array into a heap?

• Naïve approach?
 • Make a new heap and add each element of the array into the heap
ANALYSIS

• Let’s find an interesting algorithm to analyze

• Given an array of length n, how do we make that array into a heap?

• Naïve approach?
 • Make a new heap and add each element of the array into the heap
 • How long to finish?
FUN FACTS!

- Is it really $O(n \log n)$?
FUN FACTS!

- Is it really $O(n \log n)$?
 - Early insertions are into empty trees
FUN FACTS!

• Is it really $O(n \log n)$?
 • Early insertions are into empty trees $O(1)$!
FUN FACTS!

• Is it really $O(n \log n)$?
 • Early insertions are into empty trees $O(1)$!
 • Consider a simpler example, creating a sorted linked list.
 • Adding at the end of a linked list with k items takes $O(k)$ operations.
FUN FACTS!

• Is it really $O(n \log n)$?
 • Early insertions are into empty trees $O(1)$!
 • Consider a simpler example, creating a sorted linked list.
 • Adding at the end of a linked list with k items takes $O(k)$ operations.
FUN FACTS!

• Is it really $O(n \log n)$?
 • Early insertions are into empty trees $O(1)$!
 • Consider a simpler example, creating a sorted linked list.
 • Adding at the end of a linked list with k items takes $O(k)$ operations.

$1+2+3+4+5...$
FUN FACTS!

• Is it really $O(n \log n)$?
 • Early insertions are into empty trees $O(1)$!
 • Consider a simpler example, creating a sorted linked list.
 • Adding at the end of a linked list with k items takes $O(k)$ operations.

$1+2+3+4+5...$
Is it really $O(n \log n)$?

- Early insertions are into empty trees $O(1)$!
- Consider a simpler example, creating a sorted linked list.
- Adding at the end of a linked list with k items takes $O(k)$ operations.

What is this summation?

$1+2+3+4+5...$
FUN FACTS!

\[\sum_{k=1}^{n} k = \frac{1}{2} n (n + 1) \]
FUN FACTS!

\[\sum_{k=1}^{n} k = \frac{1}{2} n (n + 1) \]

• What does this mean?
FUN FACTS!

\[\sum_{k=1}^{n} k = \frac{1}{2} n (n + 1) \]

• What does this mean?
• Summing \(k \) from 1 to \(n \) is still \(O(n^2) \)
FUN FACTS!

\[\sum_{k=1}^{n} k = \frac{1}{2} n (n + 1) \]

- What does this mean?
- Summing \(k \) from 1 to \(n \) is still \(O(n^2) \)
- Similarly, summing \(\log(k) \) from 1 to \(n \) is \(O(n \log n) \)
ANALYSIS

• Naïve approach:
 • Must add n items
ANALYSIS

• Naïve approach:
 • Must add n items
 • Each add takes how long?
ANALYSIS

• Naïve approach:
 • Must add n items
 • Each add takes how long? $\log(n)$
ANALYSIS

• Naïve approach:
 • Must add n items
 • Each add takes how long? $\log(n)$
 • Whole operation is $O(n \log(n))$
ANALYSIS

• Naïve approach:
 • Must add n items
 • Each add takes how long? $\log(n)$
 • Whole operation is $O(n \log(n))$
 • Can we do better?
 • What is better? $O(n)$
HEAPS

• Facts of binary trees
HEAPS

• Facts of binary trees
 • Increasing the height by one doubles the number of possible nodes
HEAPS

• Facts of binary trees
 • Increasing the height by one doubles the number of possible nodes
 • Therefore, a complete binary tree has half of its nodes in the leaves
HEAPs

- Facts of binary trees
 - Increasing the height by one doubles the number of possible nodes
 - Therefore, a complete binary tree has half of its nodes in the leaves
 - A new piece of data is much more likely to have to percolate down to the bottom than be the smallest item in the heap
BUILDHEAP

• So a naïve buildheap takes $O(n \log n)$
BUILDHEAP

• So a naïve buildheap takes $O(n \log n)$
 • Why implement at all?
BUILDHEAP

• So a naïve buildheap takes $O(n \log n)$
 • Why implement at all?
 • If we can get it $O(n)$!
FLOYD’S METHOD

- Traverse the tree from bottom to top
 - Reverse order in the array
FLOYD’S METHOD

• Traverse the tree from bottom to top
 • Reverse order in the array
• **Start with the last node that has children.**
 • How to find?
FLOYD’S METHOD

• Traverse the tree from bottom to top
 • Reverse order in the array
• Start with the last node that has children.
 • How to find? Size / 2
FLOYD’S METHOD

• Traverse the tree from bottom to top
 • Reverse order in the array
• Start with the last node that has children.
 • How to find? \(\text{Size} / 2 \)
• Percolate down each node as necessary
FLOYD’S METHOD

- Traverse the tree from bottom to top
 - Reverse order in the array
- Start with the last node that has children.
 - How to find? Size / 2
- Percolate down each node as necessary
 - Wait! Percolate down is O(log n)!
 - This is an O(n log n) approach!
FLOYD’S METHOD

- It is $O(n \log n)$, because big O is an upper bound, but there is a tighter analysis possible!
FLOYD’S METHOD

• It is O(n log n), because big O is an upper bound, but there is a tighter analysis possible!

• How far does each node travel (at worst)
FLOYD’S METHOD

• It is $O(n \log n)$, because big O is an upper bound, but there is a tighter analysis possible!

• How far does each node travel (at worst)
 • Leaves don’t move at all: Height = 0
FLOYD’S METHOD

- It is $O(n \log n)$, because big O is an upper bound, but there is a tighter analysis possible!
- How far does each node travel (at worst)
 - Leaves don’t move at all: Height = 0
 - This is half the nodes in the tree
FLOYD’S METHOD

• It is $O(n \log n)$, because big O is an upper bound, but there is a tighter analysis possible!

• How far does each node travel (at worst)
 • 1/2 of the nodes don’t move:
 • These are leaves – Height = 0
 • 1/4 can move at most one
 • 1/8 can move at most two
FLOYD’S METHOD

• It is $O(n \log n)$, because big O is an upper bound, but there is a tighter analysis possible!

• How far does each node travel (at worst)

 • 1/2 of the nodes don’t move:
 • These are leaves – Height = 0

 • 1/4 can move at most one

 • 1/8 can move at most two …
FLOYD’S METHOD

\[\sum_{i=0}^{n} \frac{i}{2^{i+1}} = \]
FLOYD’S METHOD

\[
\sum_{i=0}^{n} \frac{i}{2^{i+1}} = 2^{-n-1} (-n + 2^{n+1} - 2)
\]

- Thanks Wolfram Alpha!
FLOYD’S METHOD

\[\sum_{i=0}^{n} \frac{i}{2^{i+1}} = 2^{-n-1} \left(-n + 2^{n+1} - 2 \right) \]

- Thanks Wolfram Alpha!
- Does this look like an easier summation?
FLOYD’S METHOD

\[
\sum_{i=0}^{\infty} \frac{1}{2^{i+1}} = 1
\]
FLOYD’S METHOD

\[\sum_{i=0}^{\infty} \frac{1}{2^{i+1}} = 1 \]

• This is a must know summation!
FLOYD’S METHOD

\[\sum_{i=0}^{\infty} \frac{1}{2^{i+1}} = 1 \]

- This is a must know summation!
- \(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots = 1 \)
FLOYD’S METHOD

This is a must know summation!

\[\sum_{i=0}^{\infty} \frac{1}{2^{i+1}} = 1 \]

• 1/2 + 1/4 + 1/8 + ... = 1

• How do we use this to prove our complicated summation?
FLOYD’S METHOD

\[\frac{1}{2} + \frac{1}{4} + \frac{1}{8} \ldots + \frac{1}{2^n} \leq 1 \]
FLOYD’S METHOD

\[
\frac{1}{2} + \frac{1}{4} + \frac{1}{8} \ldots \ldots + \frac{1}{2^n} \leq 1
\]

\[
\frac{1}{4} + \frac{1}{8} \ldots \ldots + \frac{1}{2^n} \leq \frac{1}{2}
\]

\[
\frac{1}{8} \ldots \ldots + \frac{1}{2^n} \leq \frac{1}{4}
\]
FLOYD’S METHOD

\[
\frac{1}{2} + \frac{1}{4} + \frac{1}{8} \ldots + \frac{1}{2^n} \leq 1
\]

\[
\frac{1}{4} + \frac{1}{8} \ldots + \frac{1}{2^n} \leq \frac{1}{2}
\]

\[
\frac{1}{8} \ldots + \frac{1}{2^n} \leq \frac{1}{4}
\]

- Vertical columns sum to:
 \[\frac{i}{2^i}\text{, which is what we want}\]

- What is the right summation?
 - Our original summation plus 1
FLOYD’S METHOD

\[\sum_{i=1}^{\infty} \frac{i}{2^i} = 2 \]
FLOYD’S METHOD

\[\sum_{i=1}^{\infty} \frac{i}{2^i} = 2 \]

• This means that the number of swaps we perform in Floyd’s method is 2 times the size… So Floyd’s method is \(O(n) \)