CSE 373

OCTOBER 30™ - PRIORITY QUEUES

ADMINISTRIVIA

Practice exam out by tomorrow
P1 EC graded by tonight
P2 graded on Wednesday

HW regrades tonight

 Please fill out the form if you have
regrade questions.

MIDTERM EXAM

* Friday, November 3, 2:30-3:20
* No note sheets or calculators
« Exam review in class on Wednesday

« Covers everything through the end of
today’s lecture

PRIORITY QUEUE

* New ADT
* Objects in the priority queue have:

- Data
* Priority
« Conditions
 Lower priority items should dequeue first
« Should be able to change priority of an
item
* FIFO for equal priority?

PRIORITY QUEUE

 insert(K key, int priority)
* Insert the key into the PQ with given priority
e findMin()
* Return the key that currently has lowest
priority in the PQ (min-heap)
* deleteMin()
* Return and remove the key with lowest
priority
« changePriority(K key, int newPri)

* Assign a new priority to the object key

PRIORITY QUEUE

 How to implement?

- Keep data sorted (somehow)
* Array?

* Inserting into the middle is costly
(must move other items)

 Linked list?

* Must iterate through entire list to find place
« Cannot move backward if priority changes

PRIORITY QUEUE

 These data structures will all give us the
behavior we want as far as the ADT, but
they may be poor design decisions

* Any other data structures to try?

PRIORITY QUEUE

Want the speed of trees (but not BST)
Priority Queue has unique demands

Other types of trees?
Review BST first

PROPERTIES (BST)

* Tree (Binary)
* Root
* (Two) Children

* No cycles
« Search

 Comparable data
 Left child data < parent data
- Smallest child is at the left most node

PROPERTIES (BST)

* Binary tree may be useful
« Search property doesn’t help

* Always deleting min
* Put min on top!

HEAP-ORDER PROPERTY

« Still a binary tree

 Instead of search (left < parent),
parent should be less than children

HEAP-ORDER PROPERTY

Still a binary tree

Instead of search (left < parent),
parent should be less than children

How to implement?
Insert and delete are different than BST

HEAP-ORDER PROPERTY

Still a binary tree

Instead of search (left < parent),
parent should be less than children

How to implement?
Insert and delete are different than BST

HEAPS

 The Priority Queue is the ADT
 The Heap is the Data Structure

COMPLETENESS

2
e

16 17 18 19 20 21 22 23 24 25

Filling left to right and top to bottom is
another property - completeness

HEAP EXAMPLE

HEAPS

 Heap property (parents < children)

« Complete tree property (left to right,
bottom to top)

HEAPS

 Heap property (parents < children)

« Complete tree property (left to right,
bottom to top)

 How does this help?
* Array implementation

HEAPS

* Insert into array from left to right

 For any parent at index I,
children at 2*i+1 and 2%i+2

REVIEW

* Array property

HEAPS

« How to maintain heap property then?
- Parent must be higher priority than
children

 Two functions — percolate up and
percolate down

HEAP FUNCTIONS

 Percolate up

* When a new item is inserted:

* Place the item at the next position to
preserve completeness

« Swap the item up the tree until it is larger
than its parent

HEAP FUNCTIONS

 Percolate down

 When an item is deleted:

Remove the root of the tree (to be returned)
Move the last object in the tree to the root

Swap the moved piece down while it is
larger than it's smallest child

Only swap with the smallest child

HEAPS AS ARRAYS

 Because heaps are complete, they can be
represented as arrays without any gaps
in them.

* Naive implementation:
o Left child: 2%i+1
* Right child: 2%i + 2
« Parent: (i-1)/2

HEAPS AS ARRAYS

« Alternate (common) implementation:

* Put the root of the array at index 1
* Leave index O blank

 Calculating children/parent becomes:
 Left child: 2%
* Right child: 2%i + 1
« Parent: i/2

HEAPS AS ARRAYS

« Why do an array at all?

« + Memory efficiency
* + Fast accesses to data
* + Forces log n depth
* - Needs to resize
« - Can waste space
 Almost always done through an array

ANALYSIS

* Let’s find an interesting algorithm to
analyze

ANALYSIS

* Let’s find an interesting algorithm to
analyze

 Given an array of length n, how do we
make that array into a heap?

ANALYSIS

* Let’s find an interesting algorithm to
analyze

 Given an array of length n, how do we
make that array into a heap?

* Naive approach?

 Make a new heap and add each element
of the array into the heap

ANALYSIS

* Let’s find an interesting algorithm to
analyze

 Given an array of length n, how do we
make that array into a heap?

* Naive approach?

 Make a new heap and add each element
of the array into the heap

* How long to finish?

FUN FACTS!

* Is it really O(n log n)?

FUN FACTS!

* Is it really O(n log n)?
- Early insertions are into empty trees

FUN FACTS!

* Is it really O(n log n)?
 Early insertions are into empty trees O(1)!

FUN FACTS!

* Is it really O(n log n)?
 Early insertions are into empty trees O(1)!

« Consider a simpler example, creating a
sorted linked list.

+ Adding at the end of a linked list with k
items takes O(k) operations.

FUN FACTS!

* Is it really O(n log n)?
 Early insertions are into empty trees O(1)!

« Consider a simpler example, creating a
sorted linked list.

+ Adding at the end of a linked list with k
items takes O(k) operations.

FUN FACTS!

* Is it really O(n log n)?
 Early insertions are into empty trees O(1)!

« Consider a simpler example, creating a
sorted linked list.

+ Adding at the end of a linked list with k
items takes O(k) operations.

1+2+3+4+5. ..

FUN FACTS!

* Is it really O(n log n)?
 Early insertions are into empty trees O(1)!

« Consider a simpler example, creating a
sorted linked list.

+ Adding at the end of a linked list with k
items takes O(k) operations.

1+2+3+4+5. ..

FUN FACTS!

* Is it really O(n log n)?
 Early insertions are into empty trees O(1)!

« Consider a simpler example, creating a
sorted linked list.

+ Adding at the end of a linked list with k
items takes O(k) operations.

1+2+3+4+5. ..
What is this summation?

FUN FACTS!

n 1
Zk =—-nn+1)
2
k=1

FUN FACTS!

n l
Zk =—-nn+1)
2
k=1

« What does this mean?

FUN FACTS!

n 1
Zk =—-nn+1)
2
k=1

« What does this mean?
 Summing k from 1 to n is still 0 (n?)

FUN FACTS!

n 1
Zk =—-nn+1)
2
k=1

« What does this mean?

 Summing k from 1 to n is still 0 (n?)

Similarly, summing log(k) from1tonis
O(n log n)

ANALYSIS

* Naive approach:
* Must add n items

ANALYSIS

* Naive approach:

* Must add n items
- Each add takes how long?

ANALYSIS

* Naive approach:

* Must add n items
- Each add takes how long? 1log(n)

ANALYSIS

* Naive approach:

* Must add n items
- Each add takes how long? 1log(n)

 Whole operationis O(n log(n))

ANALYSIS

* Naive approach:

* Must add n items
- Each add takes how long? 1log(n)
 Whole operationis O(n log(n))

» Can we do better?
* What is better? O(n)

HEAPS

* Facts of binary trees

HEAPS

* Facts of binary trees

* Increasing the height by one doubles the number
of possible nodes

HEAPS

* Facts of binary trees

* Increasing the height by one doubles the number
of possible nodes

* Therefore, a complete binary tree has half of its
nodes in the leaves

HEAPS

* Facts of binary trees

* Increasing the height by one doubles the number
of possible nodes

* Therefore, a complete binary tree has half of its
nodes in the leaves

* A new piece of data is much more likely to have
to percolate down to the bottom than be the
smallest item In the heap

BUILDHEAP

* So a naive buildheap takes O(n log n)

BUILDHEAP

* So a naive buildheap takes O(n log n)
* Why implement at all?

BUILDHEAP

* So a naive buildheap takes O(n log n)

* Why implement at all?
 IfwecangetitO(n)!

FLOYD’S METHOD

 Traverse the tree from bottom to top
* Reverse order in the array

FLOYD’S METHOD

 Traverse the tree from bottom to top

* Reverse order in the array
« Start with the last node that has children.

« How to find?

FLOYD’S METHOD

 Traverse the tree from bottom to top

* Reverse order in the array
« Start with the last node that has children.

 Howtofind? Size / 2

FLOYD’S METHOD

 Traverse the tree from bottom to top

* Reverse order in the array
« Start with the last node that has children.

 Howto find? size / 2
 Percolate down each node as necessary

FLOYD’S METHOD

 Traverse the tree from bottom to top

* Reverse order in the array
« Start with the last node that has children.

 Howto find? size / 2
 Percolate down each node as necessary

- Wait! Percolate down is O(log n)!
* This is an O(n log n) approach!

FLOYD’S METHOD

 Itis O(n log n), because big O is an
upper bound, but there is a tighter
analysis possible!

FLOYD’S METHOD

 Itis O(n log n), because big O is an
upper bound, but there is a tighter
analysis possible!

« How far does each node travel (at worst)

FLOYD’S METHOD

 Itis O(n log n), because big O is an
upper bound, but there is a tighter
analysis possible!

« How far does each node travel (at worst)

* Leaves don’'t move at all: Height =0

FLOYD’S METHOD

It is O(n log n), because big O is an
upper bound, but there is a tighter
analysis possible!

How far does each node travel (at worst)

* Leaves don’'t move at all: Height =0
 This is half the nodes in the tree

FLOYD’S METHOD

It is O(n log n), because big O is an
upper bound, but there is a tighter
analysis possible!

How far does each node travel (at worst)

* 1/2 of the nodes don’'t move:
These are leaves — Height = 0

* 1/4 can move at most one
 1/8 can move at most two

FLOYD’S METHOD

It is O(n log n), because big O is an
upper bound, but there is a tighter
analysis possible!

How far does each node travel (at worst)

* 1/2 of the nodes don’'t move:
These are leaves — Height = 0

* 1/4 can move at most one
 1/8 can move at most two ...

FLOYD’S METHOD

n

Z 21:- 1

=0

FLOYD’S METHOD

n

Z .:1 — 2—11—1 (_n + 2)14-1 . 2)
T 2 |
=0

 Thanks Wolfram Alpha!

FLOYD’S METHOD

n

Z .:-1 — 2—11—1 l’_n + 2114—1 . 2)
2 |
=0

 Thanks Wolfram Alpha!

e Does this look like an easier summation?

FLOYD’S METHOD

= 1
Zzﬂ-l nk

=0

FLOYD’S METHOD

= 1
Zzﬂ-l nk

=0

* This is a must know summation!

FLOYD’S METHOD

— 1
Z(;?.H-l ks
I=

 This is a must know summation!
e 1/2+1/4+1/8+...=1

FLOYD’S METHOD

 This is a must know summation!
e 1/2+1/4+1/8+...=1

« How do we use this to prove our
complicated summation?

FLOYD’S METHOD

1/2 + 1/4 +1/8 +1/22 <1

FLOYD’S METHOD

1/2 + 1/4 +1/8 +1/22 <1
1/4 + 1/8+ 1/2* < 1/2
1/8 .. . + 1/2® < 1/4

FLOYD’S METHOD

1/2 + 1/4 +1/8 +1/22 <1
1/4 + 1/8+ 1/2* < 1/2
1/8 .. . + 1/2® < 1/4

 Vertical columns sum to:
i/2”1i, which is what we want

 What is the right summation?

* Qur original summation plus 1

FLOYD’S METHOD

FLOYD’S METHOD
S

 This means that the number of swaps we
perform in Floyd’s method is 2 times the
size... So Floyd’s method is O(n)

