
CSE 373 
OCTOBER 30TH  – PRIORITY QUEUES 



ADMINISTRIVIA 
•  Practice exam out by tomorrow 
•  P1 EC graded by tonight 
•  P2 graded on Wednesday 
•  HW regrades tonight 

•  Please fill out the form if you have 
regrade questions. 



MIDTERM EXAM 
•  Friday, November 3rd, 2:30-3:20 
•  No note sheets or calculators 
•  Exam review in class on Wednesday 
•  Covers everything through the end of 

today’s lecture 



PRIORITY QUEUE 
•  New ADT 
•  Objects in the priority queue have: 

•  Data 
•  Priority 

•  Conditions 
•  Lower priority items should dequeue first 
•  Should be able to change priority of an 

item 
•  FIFO for equal priority? 



PRIORITY QUEUE 
•  insert(K key, int priority) 

•  Insert the key into the PQ with given priority 
•  findMin() 

•  Return the key that currently has lowest 
priority in the PQ (min-heap) 

•  deleteMin() 
•  Return and remove the key with lowest 

priority 
•  changePriority(K key, int newPri) 

•  Assign a new priority to the object key 



PRIORITY QUEUE 
•  How to implement? 

•  Keep data sorted (somehow) 
•  Array? 

•  Inserting into the middle is costly  
 (must move other items) 

•  Linked list? 
•  Must iterate through entire list to find place 
•  Cannot move backward if priority changes 



PRIORITY QUEUE 
•  These data structures will all give us the 

behavior we want as far as the ADT, but 
they may be poor design decisions 

•  Any other data structures to try? 



PRIORITY QUEUE 
•  Want the speed of trees (but not BST) 
•  Priority Queue has unique demands 
•  Other types of trees? 
•  Review BST first 



PROPERTIES (BST) 
•  Tree (Binary) 

•  Root  
•  (Two) Children 
•  No cycles 

•  Search 
•  Comparable data 
•  Left child data < parent data 
•  Smallest child is at the left most node 

 



PROPERTIES (BST) 
•  Binary tree may be useful 
•  Search property doesn’t help 

•  Always deleting min 
•  Put min on top! 
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•  Instead of search (left < parent), 

 parent should be less than children 
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HEAP-ORDER PROPERTY 
•  Still a binary tree 
•  Instead of search (left < parent), 

 parent should be less than children 
•  How to implement?  
•  Insert and delete are different than BST 
 



HEAPS 
•  The Priority Queue is the ADT 
•  The Heap is the Data Structure 
 



COMPLETENESS 

Filling left to right and top to bottom is 
another property - completeness 



HEAP EXAMPLE 
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HEAPS 
•  Heap property (parents < children) 
•  Complete tree property (left to right, 

bottom to top) 
•  How does this help? 

•  Array implementation 
 



HEAPS 

0 1 2 3 4 

•  Insert into array from left to right 
•  For any parent at index i, 

 children at 2*i+1 and 2*i+2 



REVIEW 
•  Array property 
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HEAPS 
•  How to maintain heap property then? 

•  Parent must be higher priority than 
children 

•  Two functions – percolate up and 
percolate down 



HEAP FUNCTIONS 
•  Percolate up 

•  When a new item is inserted: 
•  Place the item at the next position to 

preserve completeness 
•  Swap the item up the tree until it is larger 

than its parent 



HEAP FUNCTIONS 
•  Percolate down 

•  When an item is deleted: 
•  Remove the root of the tree (to be returned) 
•  Move the last object in the tree to the root 
•  Swap the moved piece down while it is 

larger than it’s smallest child 
•  Only swap with the smallest child 



HEAPS AS ARRAYS 
•  Because heaps are complete, they can be 

represented as arrays without any gaps 
in them. 

•  Naïve implementation: 
•  Left child: 2*i+1 
•  Right child: 2*i + 2 
•  Parent: (i-1)/2 



HEAPS AS ARRAYS 
•  Alternate (common) implementation: 

•  Put the root of the array at index 1 
•  Leave index 0 blank 
•  Calculating children/parent becomes: 

•  Left child: 2*i 
•  Right child: 2*i + 1 
•  Parent: i/2 



HEAPS AS ARRAYS 
•  Why do an array at all? 

•  + Memory efficiency 
•  + Fast accesses to data 
•  + Forces log n depth 
•  - Needs to resize 
•  - Can waste space 

•  Almost always done through an array 



ANALYSIS 
•  Let’s find an interesting algorithm to 

analyze  
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ANALYSIS 
•  Let’s find an interesting algorithm to 

analyze  
•  Given an array of length n, how do we 

make that array into a heap? 
•  Naïve approach? 

•  Make a new heap and add each element 
of the array into the heap 

•  How long to finish? 

!
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•  Is it really O(n log n)? 
•  Early insertions are into empty trees O(1)! 
•  Consider a simpler example, creating a 

sorted linked list. 
•  Adding at the end of a linked list with k 

items takes O(k) operations. 
1+2+3+4+5… 

What is this summation? 

FUN FACTS! 
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FUN FACTS! 

•  What does this mean? 
•  Summing k from 1 to n is still O(n2)!
•  Similarly, summing log(k) from 1 to n is 
O(n log n)  !
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ANALYSIS 
•  Naïve approach: 

•  Must add n items 
•  Each add takes how long? log(n)!
•  Whole operation is O(n log(n))!
•  Can we do better? 

•  What is better? O(n) 

!
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HEAPS 
•  Facts of binary trees 

•  Increasing the height by one doubles the number 
of possible nodes 

•  Therefore, a complete binary tree has half of its 
nodes in the leaves 

•  A new piece of data is much more likely to have 
to percolate down to the bottom than be the 
smallest item in the heap 
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BUILDHEAP 
•  So a naïve buildheap takes O(n log n) 

•  Why implement at all? 
•  If we can get it O(n)! 
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FLOYD’S METHOD 
•  Traverse the tree from bottom to top 

•  Reverse order in the array 
•  Start with the last node that has children. 

•  How to find? Size / 2!
•  Percolate down each node as necessary 

•  Wait! Percolate down is O(log n)! 
•  This is an O(n log n) approach! 
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•  It is O(n log n), because big O is an 

upper bound, but there is a tighter 
analysis possible! 

•  How far does each node travel (at worst) 
•  Leaves don’t move at all: Height = 0 

•  This is half the nodes in the tree 
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FLOYD’S METHOD 
•  It is O(n log n), because big O is an 

upper bound, but there is a tighter 
analysis possible! 

•  How far does each node travel (at worst) 
•  1/2 of the nodes don’t move: 

•  These are leaves – Height = 0 

•  1/4 can move at most one  
•  1/8 can move at most two … 
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•  Thanks Wolfram Alpha!!



FLOYD’S METHOD 

•  Thanks Wolfram Alpha! 
•  Does this look like an easier summation?!
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•  This is a must know summation! 
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FLOYD’S METHOD 

•  This is a must know summation! 
•  1/2 + 1/4 + 1/8 + … = 1 
•  How do we use this to prove our 

complicated summation?!



FLOYD’S METHOD 
1/2 + 1/4 + 1/8 … !… + 1/2n < 1!



FLOYD’S METHOD 
1/2 + 1/4 + 1/8 … !… + 1/2n < 1!

      1/4 + 1/8 … !… + 1/2n < 1/2!

            1/8 … !… + 1/2n < 1/4!
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FLOYD’S METHOD 
1/2 + 1/4 + 1/8 … !… + 1/2n < 1!

      1/4 + 1/8 … !… + 1/2n < 1/2!

            1/8 … !… + 1/2n < 1/4!

•  Vertical columns sum to: 
 i/2^i, which is what we want 

 
•  What is the right summation? 

•  Our original summation plus 1 
!

!



FLOYD’S METHOD 



FLOYD’S METHOD 

•  This means that the number of swaps we 
perform in Floyd’s method is 2 times the 
size… So Floyd’s method is O(n)!


