
CSE 373
OCTOBER 30TH – PRIORITY QUEUES

ADMINISTRIVIA
•  Practice exam out by tomorrow
•  P1 EC graded by tonight
•  P2 graded on Wednesday
•  HW regrades tonight

•  Please fill out the form if you have
regrade questions.

MIDTERM EXAM
•  Friday, November 3rd, 2:30-3:20
•  No note sheets or calculators
•  Exam review in class on Wednesday
•  Covers everything through the end of

today’s lecture

PRIORITY QUEUE
•  New ADT
•  Objects in the priority queue have:

•  Data
•  Priority

•  Conditions
•  Lower priority items should dequeue first
•  Should be able to change priority of an

item
•  FIFO for equal priority?

PRIORITY QUEUE
•  insert(K key, int priority)

•  Insert the key into the PQ with given priority
•  findMin()

•  Return the key that currently has lowest
priority in the PQ (min-heap)

•  deleteMin()
•  Return and remove the key with lowest

priority
•  changePriority(K key, int newPri)

•  Assign a new priority to the object key

PRIORITY QUEUE
•  How to implement?

•  Keep data sorted (somehow)
•  Array?

•  Inserting into the middle is costly
 (must move other items)

•  Linked list?
•  Must iterate through entire list to find place
•  Cannot move backward if priority changes

PRIORITY QUEUE
•  These data structures will all give us the

behavior we want as far as the ADT, but
they may be poor design decisions

•  Any other data structures to try?

PRIORITY QUEUE
•  Want the speed of trees (but not BST)
•  Priority Queue has unique demands
•  Other types of trees?
•  Review BST first

PROPERTIES (BST)
•  Tree (Binary)

•  Root
•  (Two) Children
•  No cycles

•  Search
•  Comparable data
•  Left child data < parent data
•  Smallest child is at the left most node

PROPERTIES (BST)
•  Binary tree may be useful
•  Search property doesn’t help

•  Always deleting min
•  Put min on top!

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

 parent should be less than children

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

 parent should be less than children
•  How to implement?
•  Insert and delete are different than BST

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

 parent should be less than children
•  How to implement?
•  Insert and delete are different than BST

HEAPS
•  The Priority Queue is the ADT
•  The Heap is the Data Structure

COMPLETENESS

Filling left to right and top to bottom is
another property - completeness

HEAP EXAMPLE

HEAPS
•  Heap property (parents < children)
•  Complete tree property (left to right,

bottom to top)

HEAPS
•  Heap property (parents < children)
•  Complete tree property (left to right,

bottom to top)
•  How does this help?

•  Array implementation

HEAPS

0 1 2 3 4

•  Insert into array from left to right
•  For any parent at index i,

 children at 2*i+1 and 2*i+2

REVIEW
•  Array property

G E D

C B

A

J K H I

F

L

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

HEAPS
•  How to maintain heap property then?

•  Parent must be higher priority than
children

•  Two functions – percolate up and
percolate down

HEAP FUNCTIONS
•  Percolate up

•  When a new item is inserted:
•  Place the item at the next position to

preserve completeness
•  Swap the item up the tree until it is larger

than its parent

HEAP FUNCTIONS
•  Percolate down

•  When an item is deleted:
•  Remove the root of the tree (to be returned)
•  Move the last object in the tree to the root
•  Swap the moved piece down while it is

larger than it’s smallest child
•  Only swap with the smallest child

HEAPS AS ARRAYS
•  Because heaps are complete, they can be

represented as arrays without any gaps
in them.

•  Naïve implementation:
•  Left child: 2*i+1
•  Right child: 2*i + 2
•  Parent: (i-1)/2

HEAPS AS ARRAYS
•  Alternate (common) implementation:

•  Put the root of the array at index 1
•  Leave index 0 blank
•  Calculating children/parent becomes:

•  Left child: 2*i
•  Right child: 2*i + 1
•  Parent: i/2

HEAPS AS ARRAYS
•  Why do an array at all?

•  + Memory efficiency
•  + Fast accesses to data
•  + Forces log n depth
•  - Needs to resize
•  - Can waste space

•  Almost always done through an array

ANALYSIS
•  Let’s find an interesting algorithm to

analyze

!

ANALYSIS
•  Let’s find an interesting algorithm to

analyze
•  Given an array of length n, how do we

make that array into a heap?

!

ANALYSIS
•  Let’s find an interesting algorithm to

analyze
•  Given an array of length n, how do we

make that array into a heap?
•  Naïve approach?

•  Make a new heap and add each element
of the array into the heap

!

ANALYSIS
•  Let’s find an interesting algorithm to

analyze
•  Given an array of length n, how do we

make that array into a heap?
•  Naïve approach?

•  Make a new heap and add each element
of the array into the heap

•  How long to finish?

!

FUN FACTS!
•  Is it really O(n log n)?

•  Is it really O(n log n)?
•  Early insertions are into empty trees

FUN FACTS!

•  Is it really O(n log n)?
•  Early insertions are into empty trees O(1)!

FUN FACTS!

•  Is it really O(n log n)?
•  Early insertions are into empty trees O(1)!
•  Consider a simpler example, creating a

sorted linked list.
•  Adding at the end of a linked list with k

items takes O(k) operations.

FUN FACTS!

•  Is it really O(n log n)?
•  Early insertions are into empty trees O(1)!
•  Consider a simpler example, creating a

sorted linked list.
•  Adding at the end of a linked list with k

items takes O(k) operations.

FUN FACTS!

•  Is it really O(n log n)?
•  Early insertions are into empty trees O(1)!
•  Consider a simpler example, creating a

sorted linked list.
•  Adding at the end of a linked list with k

items takes O(k) operations.
1+2+3+4+5…

FUN FACTS!

•  Is it really O(n log n)?
•  Early insertions are into empty trees O(1)!
•  Consider a simpler example, creating a

sorted linked list.
•  Adding at the end of a linked list with k

items takes O(k) operations.
1+2+3+4+5…

FUN FACTS!

•  Is it really O(n log n)?
•  Early insertions are into empty trees O(1)!
•  Consider a simpler example, creating a

sorted linked list.
•  Adding at the end of a linked list with k

items takes O(k) operations.
1+2+3+4+5…

What is this summation?

FUN FACTS!

FUN FACTS!

FUN FACTS!

•  What does this mean?

FUN FACTS!

•  What does this mean?
•  Summing k from 1 to n is still O(n2)!

FUN FACTS!

•  What does this mean?
•  Summing k from 1 to n is still O(n2)!
•  Similarly, summing log(k) from 1 to n is
O(n log n) !

ANALYSIS
•  Naïve approach:

•  Must add n items
!

ANALYSIS
•  Naïve approach:

•  Must add n items
•  Each add takes how long?

!

ANALYSIS
•  Naïve approach:

•  Must add n items
•  Each add takes how long? log(n)!

!

ANALYSIS
•  Naïve approach:

•  Must add n items
•  Each add takes how long? log(n)!
•  Whole operation is O(n log(n))!

!

ANALYSIS
•  Naïve approach:

•  Must add n items
•  Each add takes how long? log(n)!
•  Whole operation is O(n log(n))!
•  Can we do better?

•  What is better? O(n)

!

HEAPS
•  Facts of binary trees

HEAPS
•  Facts of binary trees

•  Increasing the height by one doubles the number
of possible nodes

HEAPS
•  Facts of binary trees

•  Increasing the height by one doubles the number
of possible nodes

•  Therefore, a complete binary tree has half of its
nodes in the leaves

HEAPS
•  Facts of binary trees

•  Increasing the height by one doubles the number
of possible nodes

•  Therefore, a complete binary tree has half of its
nodes in the leaves

•  A new piece of data is much more likely to have
to percolate down to the bottom than be the
smallest item in the heap

BUILDHEAP
•  So a naïve buildheap takes O(n log n)

BUILDHEAP
•  So a naïve buildheap takes O(n log n)

•  Why implement at all?

BUILDHEAP
•  So a naïve buildheap takes O(n log n)

•  Why implement at all?
•  If we can get it O(n)!

FLOYD’S METHOD
•  Traverse the tree from bottom to top

•  Reverse order in the array

FLOYD’S METHOD
•  Traverse the tree from bottom to top

•  Reverse order in the array
•  Start with the last node that has children.

•  How to find?

FLOYD’S METHOD
•  Traverse the tree from bottom to top

•  Reverse order in the array
•  Start with the last node that has children.

•  How to find? Size / 2!

FLOYD’S METHOD
•  Traverse the tree from bottom to top

•  Reverse order in the array
•  Start with the last node that has children.

•  How to find? Size / 2!
•  Percolate down each node as necessary

FLOYD’S METHOD
•  Traverse the tree from bottom to top

•  Reverse order in the array
•  Start with the last node that has children.

•  How to find? Size / 2!
•  Percolate down each node as necessary

•  Wait! Percolate down is O(log n)!
•  This is an O(n log n) approach!

FLOYD’S METHOD
•  It is O(n log n), because big O is an

upper bound, but there is a tighter
analysis possible!

FLOYD’S METHOD
•  It is O(n log n), because big O is an

upper bound, but there is a tighter
analysis possible!

•  How far does each node travel (at worst)

FLOYD’S METHOD
•  It is O(n log n), because big O is an

upper bound, but there is a tighter
analysis possible!

•  How far does each node travel (at worst)
•  Leaves don’t move at all: Height = 0

FLOYD’S METHOD
•  It is O(n log n), because big O is an

upper bound, but there is a tighter
analysis possible!

•  How far does each node travel (at worst)
•  Leaves don’t move at all: Height = 0

•  This is half the nodes in the tree

FLOYD’S METHOD
•  It is O(n log n), because big O is an

upper bound, but there is a tighter
analysis possible!

•  How far does each node travel (at worst)
•  1/2 of the nodes don’t move:

•  These are leaves – Height = 0

•  1/4 can move at most one
•  1/8 can move at most two

FLOYD’S METHOD
•  It is O(n log n), because big O is an

upper bound, but there is a tighter
analysis possible!

•  How far does each node travel (at worst)
•  1/2 of the nodes don’t move:

•  These are leaves – Height = 0

•  1/4 can move at most one
•  1/8 can move at most two …

FLOYD’S METHOD

FLOYD’S METHOD

•  Thanks Wolfram Alpha!!

FLOYD’S METHOD

•  Thanks Wolfram Alpha!
•  Does this look like an easier summation?!

FLOYD’S METHOD

FLOYD’S METHOD

•  This is a must know summation!!

FLOYD’S METHOD

•  This is a must know summation!
•  1/2 + 1/4 + 1/8 + … = 1!

FLOYD’S METHOD

•  This is a must know summation!
•  1/2 + 1/4 + 1/8 + … = 1
•  How do we use this to prove our

complicated summation?!

FLOYD’S METHOD
1/2 + 1/4 + 1/8 … !… + 1/2n < 1!

FLOYD’S METHOD
1/2 + 1/4 + 1/8 … !… + 1/2n < 1!

 1/4 + 1/8 … !… + 1/2n < 1/2!

 1/8 … !… + 1/2n < 1/4!

!

FLOYD’S METHOD
1/2 + 1/4 + 1/8 … !… + 1/2n < 1!

 1/4 + 1/8 … !… + 1/2n < 1/2!

 1/8 … !… + 1/2n < 1/4!

•  Vertical columns sum to:
 i/2^i, which is what we want

•  What is the right summation?

•  Our original summation plus 1
!

!

FLOYD’S METHOD

FLOYD’S METHOD

•  This means that the number of swaps we
perform in Floyd’s method is 2 times the
size… So Floyd’s method is O(n)!

