CSE 373

OCTOBER 27™ - PRIORITY QUEUES




TODAY

« HW 2 grades went out yesterday
* Many of the problems seemed to be a problem
with rigor

* In proofs, justify what you're saying and make as
much explicit as you can




TODAY

« HW 2 grades went out yesterday
* Many of the problems seemed to be a problem
with rigor

* In proofs, justify what you're saying and make as
much explicit as you can




TODAY

« B+-Trees

* Conclusion and important info
 New ADT - Priority Queue




B-TREE EXAMPLE

* Let M (the number of children from a
signpost) be 3 and let L (the number of k,v
pairs in a leaf) be 1

* This is a 3-1 tree (uncommon, but useful for
demonstration).




B-TREES

 B-Trees do not receive a benefit unless their
nodes are page aligned

- If the nodes overlap a page boundary, we are
doubling the number of potential disk accesses




B-TREES

 B-Trees do not receive a benefit unless their
nodes are page aligned

- If the nodes overlap a page boundary, we are
doubling the number of potential disk accesses

 Because of this, B-trees are not implemented in
Java.




B-TREES

 Designed based on our knowledge of
memory architecture

 If a disk access brings a whole page into
memory (or cache), make sure that we get the
maximum amount of information.

« When we bring in a signpost, we can use fast
in-memory binary search to find the correct child




B-TREES

* Important things to remember

Signposts v. Leaves
Performing a find
Runtime analysis
Inserting in simple cases
Calculating M and L




B-TREE

e Conclusion




B-TREE

e Conclusion

* Good data structure for working with and
understanding memory and the disk




B-TREE

e Conclusion

* Good data structure for working with and
understanding memory and the disk

* More complicated analysis, but comes after
recognizing that bigO assumes equal memory
access




B-TREE

e Conclusion

* Good data structure for working with and
understanding memory and the disk

* More complicated analysis, but comes after
recognizing that bigO assumes equal memory
access

« Computer architecture constraints have real-
world impacts that can be corrected for




B-TREE

e Conclusion

Good data structure for working with and
understanding memory and the disk

More complicated analysis, but comes after
recognizing that bigO assumes equal memory
access

Computer architecture constraints have real-
world impacts that can be corrected for

Theory is great, but it has its limitations




PRIORITY QUEUE

* New ADT




PRIORITY QUEUE

* New ADT
* Objects in the priority queue have:

- Data
* Priority




PRIORITY QUEUE

* New ADT
* Objects in the priority queue have:

- Data
* Priority
« Conditions
 Lower priority items should dequeue first
« Should be able to change priority of an
item
* FIFO for equal priority?




PRIORITY QUEUE

 insert(K key, int priority)
* Insert the key into the PQ with given priority
e findMin()
* Return the key that currently has lowest
priority in the PQ (min-heap)
* deleteMin()
* Return and remove the key with lowest
priority
« changePriority(K key, int newPri)

* Assign a new priority to the object key



PRIORITY QUEUE

* Applications?




PRIORITY QUEUE

* Applications?
* Hospitals
« CSE course overloads
* Etc...




PRIORITY QUEUE

 How to implement?




PRIORITY QUEUE

 How to implement?

* Array?




PRIORITY QUEUE

 How to implement?
* Array?

* Must keep sorted

* Inserting into the middle is costly
(must move other items)




PRIORITY QUEUE

 How to implement?

- Keep data sorted (somehow)
* Array?

* Inserting into the middle is costly
(must move other items)

 Linked list?

* Must iterate through entire list to find place
« Cannot move backward if priority changes




PRIORITY QUEUE

 These data structures will all give us the
behavior we want as far as the ADT, but
they may be poor design decisions

* Any other data structures to try?




PRIORITY QUEUE

* Priority queue implementations?




PRIORITY QUEUE

* Priority queue implementations?

* Binary search tree?




PRIORITY QUEUE

* Priority queue implementations?

* Binary search tree?
 Faster insert




PRIORITY QUEUE

* Priority queue implementations?

* Binary search tree?
 Faster insert

* Find? Always deleting the smallest (left-
most) element




PRIORITY QUEUE

* Priority queue implementations?

* Binary search tree?
 Faster insert

* Find? Always deleting the smallest (left-
most) element

« Changing priority?




PRIORITY QUEUE

 Want the speed of trees (but not BST)
 Priority Queue has unique demands




PRIORITY QUEUE

 Want the speed of trees (but not BST)
 Priority Queue has unique demands
« Other types of trees?




PRIORITY QUEUE

Want the speed of trees (but not BST)
Priority Queue has unique demands

Other types of trees?
Review BST first




PROPERTIES (BST)

e Tree




PROPERTIES (BST)

* Tree (Binary)

* Root
* (Two) Children

* No cycles




PROPERTIES (BST)

* Tree (Binary)
* Root
* (Two) Children

* No cycles
« Search




PROPERTIES (BST)

* Tree (Binary)
* Root
* (Two) Children

* No cycles
« Search

 Comparable data
 Left child data < parent data




PROPERTIES (BST)

* Tree (Binary)
* Root
* (Two) Children

* No cycles
« Search

 Comparable data
 Left child data < parent data
- Smallest child is at the left most node




PROPERTIES (BST)

* Binary tree may be useful
« Search property doesn’t help




PROPERTIES (BST)

* Binary tree may be useful
« Search property doesn’t help
* Always deleting min




PROPERTIES (BST)

* Binary tree may be useful
« Search property doesn’t help

* Always deleting min
* Put min on top!




HEAP-ORDER PROPERTY

« Still a binary tree




HEAP-ORDER PROPERTY

« Still a binary tree
* Instead of search (left < parent),




HEAP-ORDER PROPERTY

« Still a binary tree

 Instead of search (left < parent),
parent should be less than children




HEAP-ORDER PROPERTY

Still a binary tree

Instead of search (left < parent),
parent should be less than children

How to implement?
Insert and delete are different than BST




HEAP-ORDER PROPERTY

Still a binary tree

Instead of search (left < parent),
parent should be less than children

How to implement?
Insert and delete are different than BST




HEAPS

 The Priority Queue is the ADT
 The Heap is the Data Structure




HEAP EXAMPLE

* Only looking at priorities
* Insert something priority 4




HEAP EXAMPLE

(&




HEAP EXAMPLE

(&

* Now insert priority 67




HEAP EXAMPLE

(&

* Now insert priority 6?

 Should come after 4, but no preference
right over left?




HEAP EXAMPLE

(&

* Now insert priority 6?

 Should come after 4, but no preference
right over left?

« Solution: fill the tree from top to bottom
left to right.




HEAP EXAMPLE

Now insert 2.




HEAP EXAMPLE

Now insert 2.




HEAP EXAMPLE

Could easily have been 4 on the left, but
our left to right top to bottom strategy
determines this solution




COMPLETENESS

)
s

16 17 18 19 20 21 22 23 24 25




COMPLETENESS

2
e

16 17 18 19 20 21 22 23 24 25

Filling left to right and top to bottom is
another property - completeness




HEAPS

 Heap property (parents < children)

« Complete tree property (left to right,
bottom to top)




REVIEW

7N
D




REVIEW
* Is this a heap?
* No. Why? \

<
/.\ <>




REVIEW

 |s this a heap?

< ®\

>
G G &

N\




REVIEW

* |s this a heap?

. No. Why
- ®\

>

@
Co




REVIEW

* |s this a heap?

. No. Why
- ®\

>

@
Co




REVIEW

* |s this a heap?




REVIEW

* |s this a heap?

* Yes, H
oo /.

\.
5
P




HEAPS

 Heap property (parents < children)

« Complete tree property (left to right,
bottom to top)

 How does this help?
* Array implementation




HEAPS

* Insert into array from left to right

 For any parent at index I,
children at 2*i+1 and 2%i+2




REVIEW

« Array property (with 1 indexing)




REVIEW

* Array property




REVIEW

* Array property




HEAPS

* https:/Iwww.cs.usfca.edu/~qgalles/
visualization/Heap.htmi

« Another visualizer




HEAPS

« How to maintain heap property then?




HEAPS

« How to maintain heap property then?

- Parent must be higher priority than
children




HEAPS

« How to maintain heap property then?
- Parent must be higher priority than
children

 Two functions — percolate up and
percolate down




HEAP FUNCTIONS

 Percolate up

* When a new item is inserted:

* Place the item at the next position to
preserve completeness

« Swap the item up the tree until it is larger
than its parent




HEAP FUNCTIONS

 Percolate down

 When an item is deleted:

Remove the root of the tree (to be returned)
Move the last object in the tree to the root

Swap the moved piece down while it is
larger than it's smallest child

Only swap with the smallest child




HEAPS AS ARRAYS

 Because heaps are complete, they can be
represented as arrays without any gaps
in them.

* Naive implementation:
o Left child: 2%i+1
* Right child: 2%i + 2
« Parent: (i-1)/2




HEAPS AS ARRAYS

« Alternate (common) implementation:

* Put the root of the array at index 1
* Leave index O blank

 Calculating children/parent becomes:
 Left child: 2%
* Right child: 2%i + 1
« Parent: i/2




HEAPS AS ARRAYS

« Why do an array at all?




HEAPS AS ARRAYS

« Why do an array at all?

« + Memory efficiency

+ Fast accesses to data
+ Forces log n depth

- Needs to resize

- Can waste space




HEAPS AS ARRAYS

« Why do an array at all?

« + Memory efficiency
* + Fast accesses to data
* + Forces log n depth
* - Needs to resize
« - Can waste space
 Almost always done through an array




NEXT WEEK

* Analysis of the heap
* buildHeap()—a unique case and analysis




