
CSE 373
OCTOBER 27TH – PRIORITY QUEUES

TODAY
•  HW 2 grades went out yesterday

•  Many of the problems seemed to be a problem
with rigor

•  In proofs, justify what you’re saying and make as
much explicit as you can

TODAY
•  HW 2 grades went out yesterday

•  Many of the problems seemed to be a problem
with rigor

•  In proofs, justify what you’re saying and make as
much explicit as you can

•  https://catalyst.uw.edu/webq/survey/ejmcc/
340863

TODAY
•  B+-Trees

•  Conclusion and important info
•  New ADT – Priority Queue

B-TREE EXAMPLE
•  Let M (the number of children from a

signpost) be 3 and let L (the number of k,v
pairs in a leaf) be 1

•  This is a 3-1 tree (uncommon, but useful for
demonstration).

B-TREES
•  B-Trees do not receive a benefit unless their

nodes are page aligned
•  If the nodes overlap a page boundary, we are

doubling the number of potential disk accesses

B-TREES
•  B-Trees do not receive a benefit unless their

nodes are page aligned
•  If the nodes overlap a page boundary, we are

doubling the number of potential disk accesses
•  Because of this, B-trees are not implemented in

Java.

B-TREES
•  Designed based on our knowledge of

memory architecture
•  If a disk access brings a whole page into

memory (or cache), make sure that we get the
maximum amount of information.

•  When we bring in a signpost, we can use fast
in-memory binary search to find the correct child

B-TREES
•  Important things to remember

•  Signposts v. Leaves
•  Performing a find
•  Runtime analysis
•  Inserting in simple cases
•  Calculating M and L

B-TREE
•  Conclusion

B-TREE
•  Conclusion

•  Good data structure for working with and
understanding memory and the disk

B-TREE
•  Conclusion

•  Good data structure for working with and
understanding memory and the disk

•  More complicated analysis, but comes after
recognizing that bigO assumes equal memory
access

B-TREE
•  Conclusion

•  Good data structure for working with and
understanding memory and the disk

•  More complicated analysis, but comes after
recognizing that bigO assumes equal memory
access

•  Computer architecture constraints have real-
world impacts that can be corrected for

B-TREE
•  Conclusion

•  Good data structure for working with and
understanding memory and the disk

•  More complicated analysis, but comes after
recognizing that bigO assumes equal memory
access

•  Computer architecture constraints have real-
world impacts that can be corrected for

•  Theory is great, but it has its limitations

PRIORITY QUEUE
•  New ADT

PRIORITY QUEUE
•  New ADT
•  Objects in the priority queue have:

•  Data
•  Priority

PRIORITY QUEUE
•  New ADT
•  Objects in the priority queue have:

•  Data
•  Priority

•  Conditions
•  Lower priority items should dequeue first
•  Should be able to change priority of an

item
•  FIFO for equal priority?

PRIORITY QUEUE
•  insert(K key, int priority)

•  Insert the key into the PQ with given priority
•  findMin()

•  Return the key that currently has lowest
priority in the PQ (min-heap)

•  deleteMin()
•  Return and remove the key with lowest

priority
•  changePriority(K key, int newPri)

•  Assign a new priority to the object key

PRIORITY QUEUE
•  Applications?

PRIORITY QUEUE
•  Applications?

•  Hospitals
•  CSE course overloads
•  Etc…

PRIORITY QUEUE
•  How to implement?

PRIORITY QUEUE
•  How to implement?
•  Array?

PRIORITY QUEUE
•  How to implement?
•  Array?

•  Must keep sorted
•  Inserting into the middle is costly

 (must move other items)

PRIORITY QUEUE
•  How to implement?

•  Keep data sorted (somehow)
•  Array?

•  Inserting into the middle is costly
 (must move other items)

•  Linked list?
•  Must iterate through entire list to find place
•  Cannot move backward if priority changes

PRIORITY QUEUE
•  These data structures will all give us the

behavior we want as far as the ADT, but
they may be poor design decisions

•  Any other data structures to try?

PRIORITY QUEUE
•  Priority queue implementations?

PRIORITY QUEUE
•  Priority queue implementations?

•  Binary search tree?

PRIORITY QUEUE
•  Priority queue implementations?

•  Binary search tree?
•  Faster insert

PRIORITY QUEUE
•  Priority queue implementations?

•  Binary search tree?
•  Faster insert
•  Find? Always deleting the smallest (left-

most) element

PRIORITY QUEUE
•  Priority queue implementations?

•  Binary search tree?
•  Faster insert
•  Find? Always deleting the smallest (left-

most) element
•  Changing priority?

PRIORITY QUEUE
•  Want the speed of trees (but not BST)
•  Priority Queue has unique demands

PRIORITY QUEUE
•  Want the speed of trees (but not BST)
•  Priority Queue has unique demands
•  Other types of trees?

PRIORITY QUEUE
•  Want the speed of trees (but not BST)
•  Priority Queue has unique demands
•  Other types of trees?
•  Review BST first

PROPERTIES (BST)
•  Tree

PROPERTIES (BST)
•  Tree (Binary)

•  Root
•  (Two) Children
•  No cycles

PROPERTIES (BST)
•  Tree (Binary)

•  Root
•  (Two) Children
•  No cycles

•  Search

PROPERTIES (BST)
•  Tree (Binary)

•  Root
•  (Two) Children
•  No cycles

•  Search
•  Comparable data
•  Left child data < parent data

PROPERTIES (BST)
•  Tree (Binary)

•  Root
•  (Two) Children
•  No cycles

•  Search
•  Comparable data
•  Left child data < parent data
•  Smallest child is at the left most node

PROPERTIES (BST)
•  Binary tree may be useful
•  Search property doesn’t help

PROPERTIES (BST)
•  Binary tree may be useful
•  Search property doesn’t help

•  Always deleting min

PROPERTIES (BST)
•  Binary tree may be useful
•  Search property doesn’t help

•  Always deleting min
•  Put min on top!

HEAP-ORDER PROPERTY
•  Still a binary tree

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

 parent should be less than children

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

 parent should be less than children
•  How to implement?
•  Insert and delete are different than BST

HEAP-ORDER PROPERTY
•  Still a binary tree
•  Instead of search (left < parent),

 parent should be less than children
•  How to implement?
•  Insert and delete are different than BST

HEAPS
•  The Priority Queue is the ADT
•  The Heap is the Data Structure

HEAP EXAMPLE
•  Only looking at priorities
•  Insert something priority 4

HEAP EXAMPLE

4

HEAP EXAMPLE

4

•  Now insert priority 6?

HEAP EXAMPLE

4

•  Now insert priority 6?
•  Should come after 4, but no preference

right over left?

HEAP EXAMPLE

4

•  Now insert priority 6?
•  Should come after 4, but no preference

right over left?
•  Solution: fill the tree from top to bottom

left to right.

HEAP EXAMPLE

4

6 null

Now insert 2.

HEAP EXAMPLE

2

6 4

Now insert 2.

HEAP EXAMPLE

2

6 4

Could easily have been 4 on the left, but
our left to right top to bottom strategy
determines this solution

COMPLETENESS

COMPLETENESS

Filling left to right and top to bottom is
another property - completeness

HEAPS
•  Heap property (parents < children)
•  Complete tree property (left to right,

bottom to top)

REVIEW

15 30

80 20

10
•  Is this a heap?

REVIEW

15 30

80 20

10
•  Is this a heap?
•  No. Why?

REVIEW
•  Is this a heap?

450

3

1

75

50

8 60

10 10

REVIEW
•  Is this a heap?
•  No. Why

450

3

1

75

50

8 60

10 10

REVIEW
•  Is this a heap?
•  No. Why

450

3

1

75

50

8 60

10 10

REVIEW
•  Is this a heap?

99 60 40

80 20

10

50 700

85

REVIEW
•  Is this a heap?
•  Yes, Heap

+ Complete

99 60 40

80 20

10

50 700

85

HEAPS
•  Heap property (parents < children)
•  Complete tree property (left to right,

bottom to top)
•  How does this help?

•  Array implementation

HEAPS

0 1 2 3 4

•  Insert into array from left to right
•  For any parent at index i,

 children at 2*i+1 and 2*i+2

REVIEW
•  Array property (with 1 indexing)

G E D

C B

A

J K H I

F

L

REVIEW
•  Array property

G E D

C B

A

J K H I

F

L

7

1

2 3

4 5 6

9 8 10 11 12

REVIEW
•  Array property

G E D

C B

A

J K H I

F

L

7

1

2 3

4 5 6

9 8 10 11 12

A B C D E F G H I J K L
0 1 2 3 4 5 6 7 8 9 10 11 12 13

HEAPS
•  https://www.cs.usfca.edu/~galles/

visualization/Heap.html
•  Another visualizer

HEAPS
•  How to maintain heap property then?

HEAPS
•  How to maintain heap property then?

•  Parent must be higher priority than
children

HEAPS
•  How to maintain heap property then?

•  Parent must be higher priority than
children

•  Two functions – percolate up and
percolate down

HEAP FUNCTIONS
•  Percolate up

•  When a new item is inserted:
•  Place the item at the next position to

preserve completeness
•  Swap the item up the tree until it is larger

than its parent

HEAP FUNCTIONS
•  Percolate down

•  When an item is deleted:
•  Remove the root of the tree (to be returned)
•  Move the last object in the tree to the root
•  Swap the moved piece down while it is

larger than it’s smallest child
•  Only swap with the smallest child

HEAPS AS ARRAYS
•  Because heaps are complete, they can be

represented as arrays without any gaps
in them.

•  Naïve implementation:
•  Left child: 2*i+1
•  Right child: 2*i + 2
•  Parent: (i-1)/2

HEAPS AS ARRAYS
•  Alternate (common) implementation:

•  Put the root of the array at index 1
•  Leave index 0 blank
•  Calculating children/parent becomes:

•  Left child: 2*i
•  Right child: 2*i + 1
•  Parent: i/2

HEAPS AS ARRAYS
•  Why do an array at all?

HEAPS AS ARRAYS
•  Why do an array at all?

•  + Memory efficiency
•  + Fast accesses to data
•  + Forces log n depth
•  - Needs to resize
•  - Can waste space

HEAPS AS ARRAYS
•  Why do an array at all?

•  + Memory efficiency
•  + Fast accesses to data
•  + Forces log n depth
•  - Needs to resize
•  - Can waste space

•  Almost always done through an array

NEXT WEEK
•  Analysis of the heap
•  buildHeap()—a unique case and analysis

