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OCTOBER 25™ - B-TREES




ASSORTED MINUTIAE

* Project 2 is due tonight

- Make canvas group submissions
* Load factor: total number of elements /
current table size

« Can select any load factor (but since we
don’t measure memory consumption, lower
may be better)




TODAY’S LECTURE

* Review of relevant info from Monday
 New, memory-conscious data structure

 B-trees




HARDWARE CONSTRAINTS

« So far, we’ve taken for granted that memory
access in the computer is constant and
easily accessible

This isn’t always true!

At any given time, some memory might be
cheaper and easier to access than others

Memory can’t always be accessed easily

Sometimes the OS lies, and says an object is
“in memory” when it's actually on the disk




HARDWARE CONSTRAINTS

 Back on 32-bit machines, each program had
access to 4GB of memory

* This isn’t feasible to provide!

« Sometimes there isn't enough available, and
so memory that hasn’t been used in a while
gets pushed to the disk

 Memory that is frequently accessed goes to
the cache, which is even faster than RAM
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LOCALITY AND PAGES

« Secondly, the OS uses temporal locality,

* Memory recently accessed is likely to be

accessed again

* Bring recently used data into faster memory
* Types of memory (by speed)

* Register

- L1,L2,L3

* Memory

* Disk

* The interwebs (the cloud)




LOCALITY AND PAGES

 The OS is always processing this
information and deciding which is the best

« This is why arrays are faster in practice, they
are always next to each other in memory

- Each new node in a tree may not even be Iin
the same page in memory!!

* Important to consider when designing and
explaining design problems.




COST OF MEMORY ACCESSES

* Registers (128B): Instantaneous access
L2 Cache (128KB): 0.5 nanoseconds

L3 Cache (2MB): 7 nanoseconds

 Main Memory (32 GB): 100 nanoseconds
* Disk (TBs): 8,000,000 nanoseconds
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LARGE AVL

« Suppose we are storing terabytes of data in
an AVL tree

Height is about 50
How many disk accesses will a find take?

Between 0 and 50!

This is the difference between nanoseconds
and almost half a second!

If lots data is stored on the disk, O(log n)
finds don’t happen in practice
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PROBLEMS

 Why is AVL so bad on disk?

- Each piece of data is its own node
- Each call of new may not place objects next
to each other

- Has large height, for the number of
elements?




SOLUTIONS

 What changes might we want to make to an
AVL to make it better for disk?
- Still want to keep log n height
 Allocate more objects closer together

« Have a higher branching factor so that data
you want is at a lower depth

- Take advantage of page sizes




B-TREE

* Noded data structure




B-TREE

* Noded data structure

* As an aside, what we will discuss in this
course is called a B+ tree, which has slight
differences if you go and look for resources
online




B-TREE

* Noded data structure

» Two types of nodes:
* Internal “signpost” nodes
 |leaf “data” nodes
- Each node has a capacity
* M for “signpost” nodes
L for “leaf/data” nodes
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B-TREE

* Rules

Other than the root, internal nodes have between
M/2 and M children and leaves have between L/2
and L data

Elements in the leaves are stored in sorted order

The number of subtrees for a signpost is one
more than the number of elements in the
signpost

The signpost has the smallest piece of data to
the right of it — all data is in a leaf




B-TREE

 Example
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B-TREE

* Find

* Find the correct subnode at every signpost
* O(Log, M)

* (o through the depth of the tree
* O(Logy N)

* Find the object in the leaf
* O(Log, L)

- Total find = O(Log, L + Log, M*Log,, N)
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B-TREE

 Insertion

* Insert into the correct leaf (in sorted order)
* If the leaf overflows

 split into two

- attach new child to parent

* add new key to parent

* Recursively overflow as necessary
* If the root overflows, make a new root
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 Insertion

* Find the correct leaf O(Log, L + Log, M*Log,, N)
* Insert in the leaf O(L)

« Split the leaf O(L)

» Split parents back to the root: O(M log,, n)
» Total runtime = O(L + M Log,, n)

« Splitting is actually fairly uncommon

« Care most about # of disc accesses
* Log,, n
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B-TREE

 Deletion

« Remove the data from the correct leaf

* If the leaf has too few elements,

» Adopt one from a neighbor (if it doesn’t
result in an underflow)

» Otherwise, merge with the neighbor
* Recursively underflow up to root if necessary




B-TREE
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B-TREE

* Deletion
* Find the correct element: o(Log,L + Log, M*Log,, N)
* Remove from the leaf: O(L)
* Adopt/merge with neighbor: O(L)
» Merge back up to root: O(M log,, n)
 Total time: O(L + M log,, n)




B-TREE

 Practice tool here:

* https://www.cs.usfca.edu/~qgalles/
visualization/BPlusTree.html
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B-TREE

 Why bother with the B-tree?

Many keys stored in each signpost
Each can be brought up in one disk access

« Binary search is fast because it's all in
memory

Internal nodes have only the keys (values
waste space)

What values of M and L do we want?
» Want each node to be one page
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B-TREE

« Choosing M and L

* Let a page be p bytes

» Keys are k bytes

* Pointers are t bytes

* Values are v bytes
c p=M*p+ M-1*k; M = p+k / t+k
+ L= (pt)/ (k+v)




