
CSE 373 
OCTOBER 25TH – B-TREES 



ASSORTED MINUTIAE 
•  Project 2 is due tonight 

•  Make canvas group submissions 
•  Load factor: total number of elements / 

current table size 
•  Can select any load factor (but since we 

don’t measure memory consumption, lower 
may be better) 



TODAY’S LECTURE 
•  Review of relevant info from Monday 
•  New, memory-conscious data structure 

•  B-trees 



HARDWARE CONSTRAINTS 
•  So far, we’ve taken for granted that memory 

access in the computer is constant and 
easily accessible 
•  This isn’t always true! 
•  At any given time, some memory might be 

cheaper and easier to access than others 
•  Memory can’t always be accessed easily 
•  Sometimes the OS lies, and says an object is 

“in memory” when it’s actually on the disk 



HARDWARE CONSTRAINTS 
•  Back on 32-bit machines, each program had 

access to 4GB of memory 
•  This isn’t feasible to provide! 
•  Sometimes there isn’t enough available, and 

so memory that hasn’t been used in a while 
gets pushed to the disk 

•  Memory that is frequently accessed goes to 
the cache, which is even faster than RAM 





LOCALITY AND PAGES 
•  Secondly, the OS uses temporal locality, 

•  Memory recently accessed is likely to be 
accessed again 

•  Bring recently used data into faster memory 
•  Types of memory (by speed) 

•  Register 
•  L1,L2,L3 
•  Memory 
•  Disk 
•  The interwebs (the cloud) 



LOCALITY AND PAGES 
•  The OS is always processing this 

information and deciding which is the best 
•  This is why arrays are faster in practice, they 

are always next to each other in memory 
•  Each new node in a tree may not even be in 

the same page in memory!! 
•  Important to consider when designing and 

explaining design problems. 



COST OF MEMORY ACCESSES 
•  Registers (128B): Instantaneous access 
•  L2 Cache (128KB): 0.5 nanoseconds 
•  L3 Cache (2MB): 7 nanoseconds 
•  Main Memory (32 GB): 100 nanoseconds 
•  Disk (TBs): 8,000,000 nanoseconds 
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LARGE AVL 
•  Suppose we are storing terabytes of data in 

an AVL tree 
•  Height is about 50 
•  How many disk accesses will a find take? 
•  Between 0 and 50! 
•  This is the difference between nanoseconds 

and almost half a second! 
•  If lots data is stored on the disk, O(log n) 

finds don’t happen in practice  
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PROBLEMS 
•  Why is AVL so bad on disk? 

•  Each piece of data is its own node 
•  Each call of new may not place objects next 

to each other 
•  Has large height, for the number of 

elements?  



SOLUTIONS 
•  What changes might we want to make to an 

AVL to make it better for disk? 
•  Still want to keep log n height 
•  Allocate more objects closer together 
•  Have a higher branching factor so that data 

you want is at a lower depth 
•  Take advantage of page sizes 



B-TREE 
•  Noded data structure 
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•  Noded data structure 

•  As an aside, what we will discuss in this 
course is called a B+ tree, which has slight 
differences if you go and look for resources 
online 



B-TREE 
•  Noded data structure 

•  Two types of nodes:  
•  internal “signpost” nodes  
•  leaf “data” nodes 

•  Each node has a capacity  
•  M for “signpost” nodes 
•  L for “leaf/data” nodes 
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B-TREE 
•  Rules 

•  Other than the root, internal nodes have between 
M/2 and M children and leaves have between L/2 
and L data 

•  Elements in the leaves are stored in sorted order 
•  The number of subtrees for a signpost is one 

more than the number of elements in the 
signpost 

•  The signpost has the smallest piece of data to 
the right of it – all data is in a leaf 



B-TREE 
•  Example 
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B-TREE 
•  Find 

•  Find the correct subnode at every signpost 
•  O(Log2 M) 

•  Go through the depth of the tree 
•  O(LogM N) 

•  Find the object in the leaf 
•  O(Log2 L) 

•  Total find = O(Log2 L + Log2 M*LogM N) 
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B-TREE 
•  Insertion 

•  Insert into the correct leaf (in sorted order) 
•  If the leaf overflows 

•  split into two 
•  attach new child to parent 
•  add new key to parent 

•  Recursively overflow as necessary 
•  If the root overflows, make a new root 
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B-TREE 
•  Insertion 

•  Find the correct leaf O(Log2 L + Log2 M*LogM N) 

•  Insert in the leaf O(L) 
•  Split the leaf O(L) 
•  Split parents back to the root: O(M logM n) 
•  Total runtime = O(L + M LogM n) 
•  Splitting is actually fairly uncommon 
•  Care most about # of disc accesses 

•  LogM n 



B-TREE 
•  Deletion 



B-TREE 
•  Deletion 

•  Remove the data from the correct leaf 



B-TREE 
•  Deletion 

•  Remove the data from the correct leaf 
•  If the leaf has too few elements,  



B-TREE 
•  Deletion 

•  Remove the data from the correct leaf 
•  If the leaf has too few elements,  

•  Adopt one from a neighbor (if it doesn’t 
result in an underflow) 



B-TREE 
•  Deletion 

•  Remove the data from the correct leaf 
•  If the leaf has too few elements,  

•  Adopt one from a neighbor (if it doesn’t 
result in an underflow) 

•  Otherwise, merge with the neighbor 



B-TREE 
•  Deletion 

•  Remove the data from the correct leaf 
•  If the leaf has too few elements,  

•  Adopt one from a neighbor (if it doesn’t 
result in an underflow) 

•  Otherwise, merge with the neighbor 
•  Recursively underflow up to root if necessary 
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B-TREE 
•  Deletion 

•  Find the correct element: O(Log2 L + Log2 M*LogM N) 

•  Remove from the leaf: O(L) 
•  Adopt/merge with neighbor: O(L) 
•  Merge back up to root: O(M logm n) 
•  Total time: O(L + M logm n) 



B-TREE 
•  Practice tool here: 

•  https://www.cs.usfca.edu/~galles/
visualization/BPlusTree.html 
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B-TREE 
•  Why bother with the B-tree? 

•  Many keys stored in each signpost 
•  Each can be brought up in one disk access 

•  Binary search is fast because it’s all in 
memory 

•  Internal nodes have only the keys (values 
waste space) 

•  What values of M and L do we want? 
•  Want each node to be one page 
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B-TREE 
•  Choosing M and L 

•  Let a page be p bytes 
•  Keys are k bytes 
•  Pointers are t bytes 
•  Values are v bytes 

•  p = M*p + M-1*k; M = p+k / t+k 
•  L = (p-t) / (k+v) 


