CSE 373

OCTOBER 25TH – B-TREES

ASSORTED MINUTIAE

Project 2 is due tonight

- Make canvas group submissions
- Load factor: total number of elements / current table size
- Can select any load factor (but since we don't measure memory consumption, lower may be better)

TODAY'S LECTURE

- Review of relevant info from Monday
- New, memory-conscious data structure
 - B-trees

HARDWARE CONSTRAINTS

- So far, we've taken for granted that memory access in the computer is constant and easily accessible
 - This isn't always true!
 - At any given time, some memory might be cheaper and easier to access than others
 - Memory can't always be accessed easily
 - Sometimes the OS lies, and says an object is "in memory" when it's actually on the disk

HARDWARE CONSTRAINTS

- Back on 32-bit machines, each program had access to 4GB of memory
 - This isn't feasible to provide!
 - Sometimes there isn't enough available, and so memory that hasn't been used in a while gets pushed to the disk
- Memory that is frequently accessed goes to the cache, which is even faster than RAM

The Memory Mountain

LOCALITY AND PAGES

- Secondly, the OS uses temporal locality,
 - Memory recently accessed is likely to be accessed again
 - Bring recently used data into faster memory
- Types of memory (by speed)
 - Register
 - L1,L2,L3
 - Memory
 - Disk
 - The interwebs (the cloud)

LOCALITY AND PAGES

- The OS is always processing this information and deciding which is the best
 - This is why arrays are faster in practice, they are always next to each other in memory
 - Each new node in a tree may not even be in the same page in memory!!
- Important to consider when designing and explaining design problems.

COST OF MEMORY ACCESSES

- Registers (128B): Instantaneous access
- L2 Cache (128KB): 0.5 nanoseconds
- L3 Cache (2MB): 7 nanoseconds
- Main Memory (32 GB): 100 nanoseconds
- Disk (TBs): 8,000,000 nanoseconds

 Suppose we are storing terabytes of data in an AVL tree

- Suppose we are storing terabytes of data in an AVL tree
 - Height is about 50

- Suppose we are storing terabytes of data in an AVL tree
 - Height is about 50
 - How many disk accesses will a find take?

- Suppose we are storing terabytes of data in an AVL tree
 - Height is about 50
 - How many disk accesses will a find take?
 - Between 0 and 50!

- Suppose we are storing terabytes of data in an AVL tree
 - Height is about 50
 - How many disk accesses will a find take?
 - Between 0 and 50!
 - This is the difference between nanoseconds and almost half a second!

- Suppose we are storing terabytes of data in an AVL tree
 - Height is about 50
 - How many disk accesses will a find take?
 - Between 0 and 50!
 - This is the difference between nanoseconds and almost half a second!
 - If lots data is stored on the disk, O(log n) finds don't happen in practice

• Why is AVL so bad on disk?

- Why is AVL so bad on disk?
 - Each piece of data is its own node

• Why is AVL so bad on disk?

- Each piece of data is its own node
- Each call of **new** may not place objects next to each other

• Why is AVL so bad on disk?

- Each piece of data is its own node
- Each call of **new** may not place objects next to each other
- Has large height, for the number of elements?

SOLUTIONS

- What changes might we want to make to an AVL to make it better for disk?
 - Still want to keep log n height
 - Allocate more objects closer together
 - Have a higher branching factor so that data you want is at a lower depth
 - Take advantage of page sizes

Noded data structure

- Noded data structure
 - As an aside, what we will discuss in this course is called a B+ tree, which has slight differences if you go and look for resources online

- Noded data structure
 - Two types of nodes:
 - internal "signpost" nodes
 - leaf "data" nodes
 - Each node has a capacity
 - M for "signpost" nodes
 - L for "leaf/data" nodes

- Rules
 - Other than the root, internal nodes have between M/2 and M children and leaves have between L/2 and L data

Rules

- Other than the root, internal nodes have between M/2 and M children and leaves have between L/2 and L data
- Elements in the leaves are stored in sorted order

Rules

- Other than the root, internal nodes have between M/2 and M children and leaves have between L/2 and L data
- Elements in the leaves are stored in sorted order
- The number of subtrees for a signpost is one more than the number of elements in the signpost

Rules

- Other than the root, internal nodes have between M/2 and M children and leaves have between L/2 and L data
- Elements in the leaves are stored in sorted order
- The number of subtrees for a signpost is one more than the number of elements in the signpost
- The signpost has the smallest piece of data to the right of it – all data is in a leaf

• Example

- Find
 - Find the correct subnode at every signpost
 - O(Log₂ M)

- Find the correct subnode at every signpost
 - $O(Log_2 M)$
- Go through the depth of the tree
 - O(Log_M N)

- Find the correct subnode at every signpost
 - $O(Log_2 M)$
- Go through the depth of the tree
 - O(Log_M N)
- Find the object in the leaf
 - O(Log₂ L)

- Find the correct subnode at every signpost
 - $O(Log_2 M)$
- Go through the depth of the tree
 - O(Log_M N)
- Find the object in the leaf
 - $O(Log_2 L)$
- Total find = $O(Log_2 L + Log_2 M^*Log_M N)$

- Insertion
 - Insert into the correct leaf (in sorted order)

Insertion

- Insert into the correct leaf (in sorted order)
- If the leaf overflows
 - split into two

Insertion

- Insert into the correct leaf (in sorted order)
- If the leaf overflows
 - split into two
 - attach new child to parent
 - add new key to parent

- Insert into the correct leaf (in sorted order)
- If the leaf overflows
 - split into two
 - attach new child to parent
 - add new key to parent
- Recursively overflow as necessary

- Insert into the correct leaf (in sorted order)
- If the leaf overflows
 - split into two
 - attach new child to parent
 - add new key to parent
- Recursively overflow as necessary
- If the root overflows, make a new root

- Insertion
 - Find the correct leaf O(Log₂L + Log₂ M*Log_M N)

- Find the correct leaf O(Log₂L + Log₂ M*Log_M N)
- Insert in the leaf

- Find the correct leaf O(Log₂L + Log₂ M*Log_M N)
- Insert in the leaf O(L)

- Find the correct leaf O(Log₂L + Log₂ M*Log_M N)
- Insert in the leaf O(L)
- Split the leaf O(L)

- Find the correct leaf O(Log₂L + Log₂ M*Log_M N)
- Insert in the leaf O(L)
- Split the leaf O(L)
- Split parents back to the root:

- Find the correct leaf O(Log₂L + Log₂ M*Log_M N)
- Insert in the leaf O(L)
- Split the leaf O(L)
- Split parents back to the root: O(M log_M n)

- Find the correct leaf O(Log₂L + Log₂ M*Log_M N)
- Insert in the leaf O(L)
- Split the leaf O(L)
- Split parents back to the root: O(M log_M n)
- Total runtime = O(L + M Log_M n)

- Find the correct leaf O(Log₂L + Log₂ M*Log_M N)
- Insert in the leaf O(L)
- Split the leaf O(L)
- Split parents back to the root: O(M log_M n)
- Total runtime = O(L + M Log_M n)
- Splitting is actually fairly uncommon

- Find the correct leaf O(Log₂ L + Log₂ M*Log_M N)
- Insert in the leaf O(L)
- Split the leaf O(L)
- Split parents back to the root: O(M log_M n)
- Total runtime = O(L + M Log_M n)
- Splitting is actually fairly uncommon
- Care most about # of disc accesses
 - Log_M n

• Deletion

- Deletion
 - Remove the data from the correct leaf

- Deletion
 - Remove the data from the correct leaf
 - If the leaf has too few elements,

- Remove the data from the correct leaf
- If the leaf has too few elements,
 - Adopt one from a neighbor (if it doesn't result in an underflow)

- Remove the data from the correct leaf
- If the leaf has too few elements,
 - Adopt one from a neighbor (if it doesn't result in an underflow)
 - Otherwise, merge with the neighbor

- Remove the data from the correct leaf
- If the leaf has too few elements,
 - Adopt one from a neighbor (if it doesn't result in an underflow)
 - Otherwise, merge with the neighbor
- Recursively underflow up to root if necessary

- Find the correct element: O(Log₂L + Log₂ M*Log_M N)
- Remove from the leaf: O(L)

- Find the correct element: O(Log₂L + Log₂ M*Log_M N)
- Remove from the leaf: O(L)
- Adopt/merge with neighbor: O(L)

- Find the correct element: O(Log₂L + Log₂ M*Log_M N)
- Remove from the leaf: O(L)
- Adopt/merge with neighbor: O(L)
- Merge back up to root: O(M log_m n)

- Find the correct element: O(Log₂L + Log₂ M*Log_M N)
- Remove from the leaf: O(L)
- Adopt/merge with neighbor: O(L)
- Merge back up to root: O(M log_m n)
- Total time: O(L + M log_m n)

- Practice tool here:
 - <u>https://www.cs.usfca.edu/~galles/</u> visualization/BPlusTree.html

• Why bother with the B-tree?

Many keys stored in each signpost

- Many keys stored in each signpost
- Each can be brought up in one disk access

- Many keys stored in each signpost
- Each can be brought up in one disk access
 - Binary search is fast because it's all in memory

- Many keys stored in each signpost
- Each can be brought up in one disk access
 - Binary search is fast because it's all in memory
- Internal nodes have only the keys (values waste space)

- Many keys stored in each signpost
- Each can be brought up in one disk access
 - Binary search is fast because it's all in memory
- Internal nodes have only the keys (values waste space)
- What values of M and L do we want?

- Many keys stored in each signpost
- Each can be brought up in one disk access
 - Binary search is fast because it's all in memory
- Internal nodes have only the keys (values waste space)
- What values of M and L do we want?
 - Want each node to be one page

• Choosing M and L

- Choosing M and L
 - Let a page be *p* bytes
 - Keys are *k* bytes
 - Pointers are *t* bytes
 - Values are *v* bytes
- p = M*p + M-1*k; M = p+k / t+k
- L = (p-t) / (k+v)