
CSE 373
OCTOBER 25TH – B-TREES

ASSORTED MINUTIAE
•  Project 2 is due tonight

•  Make canvas group submissions
•  Load factor: total number of elements /

current table size
•  Can select any load factor (but since we

don’t measure memory consumption, lower
may be better)

TODAY’S LECTURE
•  Review of relevant info from Monday
•  New, memory-conscious data structure

•  B-trees

HARDWARE CONSTRAINTS
•  So far, we’ve taken for granted that memory

access in the computer is constant and
easily accessible
•  This isn’t always true!
•  At any given time, some memory might be

cheaper and easier to access than others
•  Memory can’t always be accessed easily
•  Sometimes the OS lies, and says an object is

“in memory” when it’s actually on the disk

HARDWARE CONSTRAINTS
•  Back on 32-bit machines, each program had

access to 4GB of memory
•  This isn’t feasible to provide!
•  Sometimes there isn’t enough available, and

so memory that hasn’t been used in a while
gets pushed to the disk

•  Memory that is frequently accessed goes to
the cache, which is even faster than RAM

LOCALITY AND PAGES
•  Secondly, the OS uses temporal locality,

•  Memory recently accessed is likely to be
accessed again

•  Bring recently used data into faster memory
•  Types of memory (by speed)

•  Register
•  L1,L2,L3
•  Memory
•  Disk
•  The interwebs (the cloud)

LOCALITY AND PAGES
•  The OS is always processing this

information and deciding which is the best
•  This is why arrays are faster in practice, they

are always next to each other in memory
•  Each new node in a tree may not even be in

the same page in memory!!
•  Important to consider when designing and

explaining design problems.

COST OF MEMORY ACCESSES
•  Registers (128B): Instantaneous access
•  L2 Cache (128KB): 0.5 nanoseconds
•  L3 Cache (2MB): 7 nanoseconds
•  Main Memory (32 GB): 100 nanoseconds
•  Disk (TBs): 8,000,000 nanoseconds

LARGE AVL
•  Suppose we are storing terabytes of data in

an AVL tree

LARGE AVL
•  Suppose we are storing terabytes of data in

an AVL tree
•  Height is about 50

LARGE AVL
•  Suppose we are storing terabytes of data in

an AVL tree
•  Height is about 50
•  How many disk accesses will a find take?

LARGE AVL
•  Suppose we are storing terabytes of data in

an AVL tree
•  Height is about 50
•  How many disk accesses will a find take?
•  Between 0 and 50!

LARGE AVL
•  Suppose we are storing terabytes of data in

an AVL tree
•  Height is about 50
•  How many disk accesses will a find take?
•  Between 0 and 50!
•  This is the difference between nanoseconds

and almost half a second!

LARGE AVL
•  Suppose we are storing terabytes of data in

an AVL tree
•  Height is about 50
•  How many disk accesses will a find take?
•  Between 0 and 50!
•  This is the difference between nanoseconds

and almost half a second!
•  If lots data is stored on the disk, O(log n)

finds don’t happen in practice

PROBLEMS
•  Why is AVL so bad on disk?

PROBLEMS
•  Why is AVL so bad on disk?

•  Each piece of data is its own node

PROBLEMS
•  Why is AVL so bad on disk?

•  Each piece of data is its own node
•  Each call of new may not place objects next

to each other

PROBLEMS
•  Why is AVL so bad on disk?

•  Each piece of data is its own node
•  Each call of new may not place objects next

to each other
•  Has large height, for the number of

elements?

SOLUTIONS
•  What changes might we want to make to an

AVL to make it better for disk?
•  Still want to keep log n height
•  Allocate more objects closer together
•  Have a higher branching factor so that data

you want is at a lower depth
•  Take advantage of page sizes

B-TREE
•  Noded data structure

B-TREE
•  Noded data structure

•  As an aside, what we will discuss in this
course is called a B+ tree, which has slight
differences if you go and look for resources
online

B-TREE
•  Noded data structure

•  Two types of nodes:
•  internal “signpost” nodes
•  leaf “data” nodes

•  Each node has a capacity
•  M for “signpost” nodes
•  L for “leaf/data” nodes

B-TREE
•  Rules

•  Other than the root, internal nodes have between
M/2 and M children and leaves have between L/2
and L data

B-TREE
•  Rules

•  Other than the root, internal nodes have between
M/2 and M children and leaves have between L/2
and L data

•  Elements in the leaves are stored in sorted order

B-TREE
•  Rules

•  Other than the root, internal nodes have between
M/2 and M children and leaves have between L/2
and L data

•  Elements in the leaves are stored in sorted order
•  The number of subtrees for a signpost is one

more than the number of elements in the
signpost

B-TREE
•  Rules

•  Other than the root, internal nodes have between
M/2 and M children and leaves have between L/2
and L data

•  Elements in the leaves are stored in sorted order
•  The number of subtrees for a signpost is one

more than the number of elements in the
signpost

•  The signpost has the smallest piece of data to
the right of it – all data is in a leaf

B-TREE
•  Example

B-TREE
•  Find

B-TREE
•  Find

•  Find the correct subnode at every signpost
•  O(Log2 M)

B-TREE
•  Find

•  Find the correct subnode at every signpost
•  O(Log2 M)

•  Go through the depth of the tree
•  O(LogM N)

B-TREE
•  Find

•  Find the correct subnode at every signpost
•  O(Log2 M)

•  Go through the depth of the tree
•  O(LogM N)

•  Find the object in the leaf
•  O(Log2 L)

B-TREE
•  Find

•  Find the correct subnode at every signpost
•  O(Log2 M)

•  Go through the depth of the tree
•  O(LogM N)

•  Find the object in the leaf
•  O(Log2 L)

•  Total find = O(Log2 L + Log2 M*LogM N)

B-TREE
•  Insertion

•  Insert into the correct leaf (in sorted order)

B-TREE
•  Insertion

•  Insert into the correct leaf (in sorted order)
•  If the leaf overflows

•  split into two

B-TREE
•  Insertion

•  Insert into the correct leaf (in sorted order)
•  If the leaf overflows

•  split into two
•  attach new child to parent
•  add new key to parent

B-TREE
•  Insertion

•  Insert into the correct leaf (in sorted order)
•  If the leaf overflows

•  split into two
•  attach new child to parent
•  add new key to parent

•  Recursively overflow as necessary

B-TREE
•  Insertion

•  Insert into the correct leaf (in sorted order)
•  If the leaf overflows

•  split into two
•  attach new child to parent
•  add new key to parent

•  Recursively overflow as necessary
•  If the root overflows, make a new root

B-TREE
•  Insertion

•  Find the correct leaf O(Log2 L + Log2 M*LogM N)

B-TREE
•  Insertion

•  Find the correct leaf O(Log2 L + Log2 M*LogM N)

•  Insert in the leaf

B-TREE
•  Insertion

•  Find the correct leaf O(Log2 L + Log2 M*LogM N)

•  Insert in the leaf O(L)

B-TREE
•  Insertion

•  Find the correct leaf O(Log2 L + Log2 M*LogM N)

•  Insert in the leaf O(L)
•  Split the leaf O(L)

B-TREE
•  Insertion

•  Find the correct leaf O(Log2 L + Log2 M*LogM N)

•  Insert in the leaf O(L)
•  Split the leaf O(L)
•  Split parents back to the root:

B-TREE
•  Insertion

•  Find the correct leaf O(Log2 L + Log2 M*LogM N)

•  Insert in the leaf O(L)
•  Split the leaf O(L)
•  Split parents back to the root: O(M logM n)

B-TREE
•  Insertion

•  Find the correct leaf O(Log2 L + Log2 M*LogM N)

•  Insert in the leaf O(L)
•  Split the leaf O(L)
•  Split parents back to the root: O(M logM n)
•  Total runtime = O(L + M LogM n)

B-TREE
•  Insertion

•  Find the correct leaf O(Log2 L + Log2 M*LogM N)

•  Insert in the leaf O(L)
•  Split the leaf O(L)
•  Split parents back to the root: O(M logM n)
•  Total runtime = O(L + M LogM n)
•  Splitting is actually fairly uncommon

B-TREE
•  Insertion

•  Find the correct leaf O(Log2 L + Log2 M*LogM N)

•  Insert in the leaf O(L)
•  Split the leaf O(L)
•  Split parents back to the root: O(M logM n)
•  Total runtime = O(L + M LogM n)
•  Splitting is actually fairly uncommon
•  Care most about # of disc accesses

•  LogM n

B-TREE
•  Deletion

B-TREE
•  Deletion

•  Remove the data from the correct leaf

B-TREE
•  Deletion

•  Remove the data from the correct leaf
•  If the leaf has too few elements,

B-TREE
•  Deletion

•  Remove the data from the correct leaf
•  If the leaf has too few elements,

•  Adopt one from a neighbor (if it doesn’t
result in an underflow)

B-TREE
•  Deletion

•  Remove the data from the correct leaf
•  If the leaf has too few elements,

•  Adopt one from a neighbor (if it doesn’t
result in an underflow)

•  Otherwise, merge with the neighbor

B-TREE
•  Deletion

•  Remove the data from the correct leaf
•  If the leaf has too few elements,

•  Adopt one from a neighbor (if it doesn’t
result in an underflow)

•  Otherwise, merge with the neighbor
•  Recursively underflow up to root if necessary

B-TREE
•  Deletion

•  Find the correct element: O(Log2 L + Log2 M*LogM N)

•  Remove from the leaf: O(L)

B-TREE
•  Deletion

•  Find the correct element: O(Log2 L + Log2 M*LogM N)

•  Remove from the leaf: O(L)
•  Adopt/merge with neighbor: O(L)

B-TREE
•  Deletion

•  Find the correct element: O(Log2 L + Log2 M*LogM N)

•  Remove from the leaf: O(L)
•  Adopt/merge with neighbor: O(L)
•  Merge back up to root: O(M logm n)

B-TREE
•  Deletion

•  Find the correct element: O(Log2 L + Log2 M*LogM N)

•  Remove from the leaf: O(L)
•  Adopt/merge with neighbor: O(L)
•  Merge back up to root: O(M logm n)
•  Total time: O(L + M logm n)

B-TREE
•  Practice tool here:

•  https://www.cs.usfca.edu/~galles/
visualization/BPlusTree.html

B-TREE
•  Why bother with the B-tree?

B-TREE
•  Why bother with the B-tree?

•  Many keys stored in each signpost

B-TREE
•  Why bother with the B-tree?

•  Many keys stored in each signpost
•  Each can be brought up in one disk access

B-TREE
•  Why bother with the B-tree?

•  Many keys stored in each signpost
•  Each can be brought up in one disk access

•  Binary search is fast because it’s all in
memory

B-TREE
•  Why bother with the B-tree?

•  Many keys stored in each signpost
•  Each can be brought up in one disk access

•  Binary search is fast because it’s all in
memory

•  Internal nodes have only the keys (values
waste space)

B-TREE
•  Why bother with the B-tree?

•  Many keys stored in each signpost
•  Each can be brought up in one disk access

•  Binary search is fast because it’s all in
memory

•  Internal nodes have only the keys (values
waste space)

•  What values of M and L do we want?

B-TREE
•  Why bother with the B-tree?

•  Many keys stored in each signpost
•  Each can be brought up in one disk access

•  Binary search is fast because it’s all in
memory

•  Internal nodes have only the keys (values
waste space)

•  What values of M and L do we want?
•  Want each node to be one page

B-TREE
•  Choosing M and L

B-TREE
•  Choosing M and L

•  Let a page be p bytes
•  Keys are k bytes
•  Pointers are t bytes
•  Values are v bytes

•  p = M*p + M-1*k; M = p+k / t+k
•  L = (p-t) / (k+v)

