
CSE 373
OCTOBER 23RD – MEMORY AND
HARDWARE

MEMORY ANALYSIS
•  Similar to runtime analysis

MEMORY ANALYSIS
•  Similar to runtime analysis

•  Consider the worst case

MEMORY ANALYSIS
•  Similar to runtime analysis

•  Rather than counting the number of
operations, we count the amount of memory
needed

MEMORY ANALYSIS
•  Similar to runtime analysis

•  Rather than counting the number of
operations, we count the amount of memory
needed

•  During the operation, when does the
algorithm need to “keep track” of the most
number of things?

MEMORY ANALYSIS
•  Breadth first search

MEMORY ANALYSIS
•  Breadth first search

•  The Queue keeps track of the elements that
need to be analyzed next.

MEMORY ANALYSIS
•  Breadth first search

•  The Queue keeps track of the elements that
need to be analyzed next.

•  This is the memory we need to consider

MEMORY ANALYSIS
•  Breadth first search

•  The Queue keeps track of the elements that
need to be analyzed next.

•  This is the memory we need to consider
•  At what point does the Queue have the most

amount stored in it?

MEMORY ANALYSIS
•  Breadth first search

•  The Queue keeps track of the elements that
need to be analyzed next.

•  This is the memory we need to consider
•  At what point does the Queue have the most

amount stored in it?
•  When the tree is at its widest – how many

nodes is that?

MEMORY ANALYSIS
•  Breadth first search

•  The Queue keeps track of the elements that
need to be analyzed next.

•  This is the memory we need to consider
•  At what point does the Queue have the most

amount stored in it?
•  When the tree is at its widest – how many

nodes is that?
•  N/2: half the nodes of a tree are leaves

MEMORY ANALYSIS
•  Consider finding an element in a sorted

linked list

MEMORY ANALYSIS
•  Consider finding an element in a sorted

linked list
•  How much memory does this take?

MEMORY ANALYSIS
•  Consider finding an element in a sorted

linked list
•  How much memory does this take?
•  Don’t count the data structure, only count the

amount of memory that the actual algorithm
uses.

MEMORY ANALYSIS
•  Consider finding an element in a sorted

linked list
•  How much memory does this take?
•  Don’t count the data structure, only count the

amount of memory that the actual algorithm
uses.

•  What does it need to “keep track” of?

MEMORY ANALYSIS
•  Consider finding an element in a sorted

linked list
•  How much memory does this take?
•  Don’t count the data structure, only count the

amount of memory that the actual algorithm
uses.

•  What does it need to “keep track” of?
•  Just the thing we’re looking for!

MEMORY ANALYSIS
•  Consider finding an element in a sorted

linked list
•  How much memory does this take?
•  Don’t count the data structure, only count the

amount of memory that the actual algorithm
uses.

•  What does it need to “keep track” of?
•  Just the thing we’re looking for! O(1)

MEMORY ANALYSIS
•  We care about the asymptotic memory

usage

MEMORY ANALYSIS
•  We care about the asymptotic memory

usage
•  That is, as the input size of the data

structures increases, does the amount of
extra memory increase?

MEMORY ANALYSIS
•  We care about the asymptotic memory

usage
•  That is, as the input size of the data

structures increases, does the amount of
extra memory increase?
•  AVL Insert? Yes, we need to keep track of

the path from the insertion to the root

HARDWARE CONSTRAINTS
•  So far, we’ve taken for granted that memory

access in the computer is constant and
easily accessible

HARDWARE CONSTRAINTS
•  So far, we’ve taken for granted that memory

access in the computer is constant and
easily accessible
•  This isn’t always true!

HARDWARE CONSTRAINTS
•  So far, we’ve taken for granted that memory

access in the computer is constant and
easily accessible
•  This isn’t always true!
•  At any given time, some memory might be

cheaper and easier to access than others

HARDWARE CONSTRAINTS
•  So far, we’ve taken for granted that memory

access in the computer is constant and
easily accessible
•  This isn’t always true!
•  At any given time, some memory might be

cheaper and easier to access than others
•  Memory can’t always be accessed easily

HARDWARE CONSTRAINTS
•  So far, we’ve taken for granted that memory

access in the computer is constant and
easily accessible
•  This isn’t always true!
•  At any given time, some memory might be

cheaper and easier to access than others
•  Memory can’t always be accessed easily
•  Sometimes the OS lies, and says an object is

“in memory” when it’s actually on the disk

HARDWARE CONSTRAINTS
•  Back on 32-bit machines, each program had

access to 4GB of memory

HARDWARE CONSTRAINTS
•  Back on 32-bit machines, each program had

access to 4GB of memory
•  This isn’t feasible to provide!

HARDWARE CONSTRAINTS
•  Back on 32-bit machines, each program had

access to 4GB of memory
•  This isn’t feasible to provide!
•  Sometimes there isn’t enough available, and

so memory that hasn’t been used in a while
gets pushed to the disk

HARDWARE CONSTRAINTS
•  Back on 32-bit machines, each program had

access to 4GB of memory
•  This isn’t feasible to provide!
•  Sometimes there isn’t enough available, and

so memory that hasn’t been used in a while
gets pushed to the disk

•  Memory that is frequently accessed goes to
the cache, which is even faster than RAM

LOCALITY AND PAGES
•  So, the OS does two smart things

•  Spatial locality – if you use memory index
Ox371347AB, you are likely to need
Ox371347AC – bring both into cache

•  These are called pages, and they are usually
around 4kb

LOCALITY AND PAGES
•  So, the OS does two smart things

•  Spatial locality – if you use memory index
Ox371347AB, you are likely to need
Ox371347AC – bring both into cache

•  These are called pages, and they are usually
around 4kb

•  All of the processes on your computer have
access to pages in memory.

LOCALITY AND PAGES
•  When you call new in Java, you are

requesting new memory from the heap. If
there isn’t memory there, the JVM needs to
get new memory from the OS

LOCALITY AND PAGES
•  When you call new in Java, you are

requesting new memory from the heap. If
there isn’t memory there, the JVM needs to
get new memory from the OS
•  The OS only uses memory in page sizes

LOCALITY AND PAGES
•  When you call new in Java, you are

requesting new memory from the heap. If
there isn’t memory there, the JVM needs to
get new memory from the OS
•  The OS only uses memory in page sizes
•  So if you allocate 100Bytes of data, you

overallocate to 4kb!

LOCALITY AND PAGES
•  When you call new in Java, you are

requesting new memory from the heap. If
there isn’t memory there, the JVM needs to
get new memory from the OS
•  The OS only uses memory in page sizes
•  So if you allocate 100Bytes of data, you

overallocate to 4kb!
•  But you can use that 4kb if you need more

LOCALITY AND PAGES
•  Secondly, the OS uses temporal locality,

LOCALITY AND PAGES
•  Secondly, the OS uses temporal locality,

•  Memory recently accessed is likely to be
accessed again

LOCALITY AND PAGES
•  Secondly, the OS uses temporal locality,

•  Memory recently accessed is likely to be
accessed again

•  Bring recently used data into faster memory

LOCALITY AND PAGES
•  Secondly, the OS uses temporal locality,

•  Memory recently accessed is likely to be
accessed again

•  Bring recently used data into faster memory
•  Types of memory (by speed)

•  Register
•  L1,L2,L3
•  Memory
•  Disk
•  The interwebs (the cloud)

LOCALITY AND PAGES
•  The OS is always processing this

information and deciding which is the best
•  This is why arrays are faster in practice, they

are always next to each other in memory

LOCALITY AND PAGES
•  The OS is always processing this

information and deciding which is the best
•  This is why arrays are faster in practice, they

are always next to each other in memory
•  Each new node in a tree may not even be in

the same page in memory!!

LOCALITY AND PAGES
•  The OS is always processing this

information and deciding which is the best
•  This is why arrays are faster in practice, they

are always next to each other in memory
•  Each new node in a tree may not even be in

the same page in memory!!
•  Important to consider when designing and

explaining design problems.

COST OF MEMORY ACCESSES
•  Registers (128B): Instantaneous access
•  L2 Cache (128KB): 0.5 nanoseconds
•  L3 Cache (2MB): 7 nanoseconds
•  Main Memory (32 GB): 100 nanoseconds

COST OF MEMORY ACCESSES
•  Registers (128B): Instantaneous access
•  L2 Cache (128KB): 0.5 nanoseconds
•  L3 Cache (2MB): 7 nanoseconds
•  Main Memory (32 GB): 100 nanoseconds
•  Disk (TBs): 8,000,000 nanoseconds

PROCESS MEMORY
•  How does an individual process use

memory?

PROCESS MEMORY
•  How does an individual process use

memory?
•  Many different demands

•  Global variables
•  Call stack
•  Allocated variables
•  Process code

PROCESS MEMORY

PROCESS MEMORY
•  These different demands are not next to

each other in memory—little locality benefit

PROCESS MEMORY
•  These different demands are not next to

each other in memory—little locality benefit
•  Each call to new allocates wherever there is

space in the heap (memory allocator)
•  Even if two elements are created one after

another, there is no guarantee that they’ll
both be in the same page

•  This is especially true for java
•  How important is caching?

COST OF MEMORY ACCESSES
•  Registers (128B): Instantaneous access
•  L2 Cache (128KB): 0.5 nanoseconds
•  L3 Cache (2MB): 7 nanoseconds
•  Main Memory (32 GB): 100 nanoseconds
•  Disk (TBs): 8,000,000 nanoseconds

•  This is much, much worse

LARGE AVL
•  Suppose we are storing terabytes of data in

an AVL tree

LARGE AVL
•  Suppose we are storing terabytes of data in

an AVL tree
•  Height is about 50

LARGE AVL
•  Suppose we are storing terabytes of data in

an AVL tree
•  Height is about 50
•  How many disk accesses will a find take?

LARGE AVL
•  Suppose we are storing terabytes of data in

an AVL tree
•  Height is about 50
•  How many disk accesses will a find take?
•  Between 0 and 50!

LARGE AVL
•  Suppose we are storing terabytes of data in

an AVL tree
•  Height is about 50
•  How many disk accesses will a find take?
•  Between 0 and 50!
•  This is the difference between nanoseconds

and almost half a second!

LARGE AVL
•  Suppose we are storing terabytes of data in

an AVL tree
•  Height is about 50
•  How many disk accesses will a find take?
•  Between 0 and 50!
•  This is the difference between nanoseconds

and almost half a second!
•  If lots data is stored on the disk, O(log n)

finds don’t happen in practice

PROBLEMS
•  Why is AVL so bad on disk?

PROBLEMS
•  Why is AVL so bad on disk?

•  Each piece of data is its own node

PROBLEMS
•  Why is AVL so bad on disk?

•  Each piece of data is its own node
•  Each call of new may not place objects next

to each other

PROBLEMS
•  Why is AVL so bad on disk?

•  Each piece of data is its own node
•  Each call of new may not place objects next

to each other
•  Has large height, for the number of

elements?

SOLUTIONS
•  What changes might we want to make to an

AVL to make it better for disk?

SOLUTIONS
•  What changes might we want to make to an

AVL to make it better for disk?
•  Still want to keep log n height

SOLUTIONS
•  What changes might we want to make to an

AVL to make it better for disk?
•  Still want to keep log n height
•  Allocate more objects closer together

SOLUTIONS
•  What changes might we want to make to an

AVL to make it better for disk?
•  Still want to keep log n height
•  Allocate more objects closer together
•  Have a higher branching factor so that data

you want is at a lower depth

SOLUTIONS
•  What changes might we want to make to an

AVL to make it better for disk?
•  Still want to keep log n height
•  Allocate more objects closer together
•  Have a higher branching factor so that data

you want is at a lower depth
•  Take advantage of page sizes

