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•  Rather than counting the number of 
operations, we count the amount of memory 
needed 

•  During the operation, when does the 
algorithm need to “keep track” of the most 
number of things? 
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•  Breadth first search  

•  The Queue keeps track of the elements that 
need to be analyzed next. 

•  This is the memory we need to consider 
•  At what point does the Queue have the most 

amount stored in it? 
•  When the tree is at its widest – how many 

nodes is that? 
•  N/2: half the nodes of a tree are leaves 
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MEMORY ANALYSIS 
•  Consider finding an element in a sorted 

linked list 
•  How much memory does this take? 
•  Don’t count the data structure, only count the 

amount of memory that the actual algorithm 
uses. 

•  What does it need to “keep track” of? 
•  Just the thing we’re looking for! O(1) 
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MEMORY ANALYSIS 
•  We care about the asymptotic memory 

usage 
•  That is, as the input size of the data 

structures increases, does the amount of 
extra memory increase? 
•  AVL Insert? Yes, we need to keep track of 

the path from the insertion to the root 
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HARDWARE CONSTRAINTS 
•  So far, we’ve taken for granted that memory 

access in the computer is constant and 
easily accessible 
•  This isn’t always true! 
•  At any given time, some memory might be 

cheaper and easier to access than others 
•  Memory can’t always be accessed easily 
•  Sometimes the OS lies, and says an object is 

“in memory” when it’s actually on the disk 
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HARDWARE CONSTRAINTS 
•  Back on 32-bit machines, each program had 

access to 4GB of memory 
•  This isn’t feasible to provide! 
•  Sometimes there isn’t enough available, and 

so memory that hasn’t been used in a while 
gets pushed to the disk 

•  Memory that is frequently accessed goes to 
the cache, which is even faster than RAM 
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•  So, the OS does two smart things 

•  Spatial locality – if you use memory index 
Ox371347AB, you are likely to need 
Ox371347AC – bring both into cache 

•  These are called pages, and they are usually 
around 4kb 

•  All of the processes on your computer have 
access to pages in memory. 
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LOCALITY AND PAGES 
•  When you call new in Java, you are 

requesting new memory from the heap. If 
there isn’t memory there, the JVM needs to 
get new memory from the OS 
•  The OS only uses memory in page sizes 
•  So if you allocate 100Bytes of data, you 

overallocate to 4kb! 
•  But you can use that 4kb if you need more 
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LOCALITY AND PAGES 
•  Secondly, the OS uses temporal locality, 

•  Memory recently accessed is likely to be 
accessed again 

•  Bring recently used data into faster memory 
•  Types of memory (by speed) 

•  Register 
•  L1,L2,L3 
•  Memory 
•  Disk 
•  The interwebs (the cloud) 



LOCALITY AND PAGES 
•  The OS is always processing this 

information and deciding which is the best 
•  This is why arrays are faster in practice, they 

are always next to each other in memory 



LOCALITY AND PAGES 
•  The OS is always processing this 

information and deciding which is the best 
•  This is why arrays are faster in practice, they 

are always next to each other in memory 
•  Each new node in a tree may not even be in 

the same page in memory!! 



LOCALITY AND PAGES 
•  The OS is always processing this 

information and deciding which is the best 
•  This is why arrays are faster in practice, they 

are always next to each other in memory 
•  Each new node in a tree may not even be in 

the same page in memory!! 
•  Important to consider when designing and 

explaining design problems. 
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•  How does an individual process use 

memory? 
•  Many different demands 

•  Global variables 
•  Call stack 
•  Allocated variables 
•  Process code 
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PROCESS MEMORY 
•  These different demands are not next to 

each other in memory—little locality benefit 
•  Each call to new allocates wherever there is 

space in the heap (memory allocator) 
•  Even if two elements are created one after 

another, there is no guarantee that they’ll 
both be in the same page 

•  This is especially true for java 
•  How important is caching? 



COST OF MEMORY ACCESSES 
•  Registers (128B): Instantaneous access 
•  L2 Cache (128KB): 0.5 nanoseconds 
•  L3 Cache (2MB): 7 nanoseconds 
•  Main Memory (32 GB): 100 nanoseconds 
•  Disk (TBs): 8,000,000 nanoseconds 

•  This is much, much worse 



LARGE AVL 
•  Suppose we are storing terabytes of data in 

an AVL tree 



LARGE AVL 
•  Suppose we are storing terabytes of data in 

an AVL tree 
•  Height is about 50 



LARGE AVL 
•  Suppose we are storing terabytes of data in 

an AVL tree 
•  Height is about 50 
•  How many disk accesses will a find take? 



LARGE AVL 
•  Suppose we are storing terabytes of data in 

an AVL tree 
•  Height is about 50 
•  How many disk accesses will a find take? 
•  Between 0 and 50! 



LARGE AVL 
•  Suppose we are storing terabytes of data in 

an AVL tree 
•  Height is about 50 
•  How many disk accesses will a find take? 
•  Between 0 and 50! 
•  This is the difference between nanoseconds 

and almost half a second! 



LARGE AVL 
•  Suppose we are storing terabytes of data in 

an AVL tree 
•  Height is about 50 
•  How many disk accesses will a find take? 
•  Between 0 and 50! 
•  This is the difference between nanoseconds 

and almost half a second! 
•  If lots data is stored on the disk, O(log n) 

finds don’t happen in practice  
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PROBLEMS 
•  Why is AVL so bad on disk? 

•  Each piece of data is its own node 
•  Each call of new may not place objects next 

to each other 
•  Has large height, for the number of 

elements?  
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SOLUTIONS 
•  What changes might we want to make to an 

AVL to make it better for disk? 
•  Still want to keep log n height 
•  Allocate more objects closer together 
•  Have a higher branching factor so that data 

you want is at a lower depth 
•  Take advantage of page sizes 


