CSE 373: Practice Final

1 Short Answer

a) Provide two orderings [0,1,2,3,4,5,6,7] that are worst-case for quick sort. Assume that
you select the first element as the pivot. Explain why this is the worst-case. You do

not have to perform the quicksort

b) Explain why a divide-and-conquer approach would or would not be effective in finding

an element in an unsorted array.



¢) You are given a batch of UW ID numbers. Given that they are all seven digits, and
that the first two numbers correspond to the year of the student’s entry, propose a
method to put these into sorted order. Provide the time complexity of your algorithm

and explain why you believe it is fastest.

d) Provide and explain the two types of locality relevant to caching and memory accesses.



e) For each of the following sorts, explain their best-case and worst case runtime, whether
or not they are stable (in the method given in class), whether they can be halted to

provide the top k elements and whether or not they are done in place.

Insertion sort:

Selection sort:

Merge sort:

Quick sort:

Heap sort:



f) For the Uptree data structure, show the worst-case runtime for find() with and without
the weighted union optimization and with and without the path compression optimiza-

tion. In all, you should provide four worst-case runtimes.

g) Provide pseudocode for an iterator that returns all of the vertices that are exactly two

edges away from an input node in an undirected, unweighted graph.



h) Explain the difference between primary and secondary clustering in hash tables. Which

types of clustering are relevant for which probing techniques?

i) Draw an unweighted graph of at least five vertices which has two unique minimum

spanning trees.



2 Big O notation

For the following functions, determine the tightest bigO upper bound in terms of n. Write

your answers on the line provided.

a) void f1(int n) {
int 1 =1

while(i < n~4){

Jj =
while (j > 1) {
=372
}
i=1+n
}
}
0(______ )

b) void f2(int n) {
for(int i=0; i < n; i++) {
for(int j=0; j < 10; j++) {
for(int k=0; k < n; k++) {
for(int m=0; m < 10; m++) {

System.out.println("!");

c) int £3(int n){
if (n < 10) return n;
else if(n < 1000) return £3(n-2);
else return £3(n/4)+£f3(n/4);



d) int f4(int n){
if(n < 1000){

return n;

}
if (kb5 == 0){

return f4(n/2)+f4(n/2)+f4(n/2);
} else {

return f4(n-2);

3 AVL insertions
Show an AVL tree after performing the following inserts:
11,2,3,4,5,6,7,8,9,10]

You only need to show the final result, but showing intermediate steps may earn you partial

credit if a mistake is made.



Provide the pre-order, in-order, post-order and BFS traversal for the AVL tree you pro-

duced

Pre-order:

In-order:

Post-order:

Breadth-first Search:



4 Debugging

Debug the following Java code which attempts to implement a Queue. Circle any incorrect
areas and provide the correct portion. Syntax is not important.
Additionally, provide a sequence of enqueues and dequeues which would get this TestQueue

to exhibit unexpected behavior.

public class TestQueue{
String[] data;
int fp;
int 1p;
public TestQueue(){
data = new String[10];
fp = 0;
lp = 0;
}
public void enqueue(String toInput) {
data[lp] = toInput;
lp = (1p + 1)%data.length;

}
public String dequeue(){
if (fp!=1p){
String toRet = datalfp];
fp = (fp + 1)’data.length;
return toRet;
}
return null;
}

public String front(){
return datalfp];



5 Topological Sort

Provide two topological orderings for the following graph.

Explain how you could modify the topological sort algorithm to find cycles in directed
graphs.

10



6 Dijkstra’s Algorithm

Use Dijkstra’s algorithm to provide the shortest path between nodes A and F'. Show each

of your steps. In your work, indicate in which order vertices are added to the known set.

11



7 Prim’s Algorithm

Find the minimum spanning tree of the following graph using Prim’s algorithm. Show each

of your steps and indicate which edge is added to the MST at each point.

12



8 Kruskal’s Algorithm

Find the minimum spanning tree of the following graph using Kruskal’s algorithm. Provide
your ordering of edges. If an edge cannot be added to the MST, provide the cycle that would
be created if that edge were added.

10

13

13



9 Union Find

Show a union find data structure that uses weighted unions and path compressions after
the following operations. To start, there are 10 elements, named [0,1,2,3,4,5,6,7,8,9] if
there is a tie when performing a union, the first element should become the representative.
Show the array at each step. Assume that a call to union will find the representative before

performing the union.

union(1,4)
union(1,5)
union(2,6)
union(2,1)
find(6)

union(8,7)
union(0,9)
union(9,8)
union(3,1)
union(9,3)

find (3)

14



10 Algorithm Design

Design an algorithm, which given two integers (i, j) greater than two, determines whether
they have any common factors. Recall that if two numbers are both prime and not equal to
each other, then they have no common factors. Also, if a number & is composite (not-prime)

then it must have one factor that is at most v/k.
Provide pseudocode for this algorithm and then explain the runtime of your algorithm.

Additionally, if it needs more than a constant amount of additional memory, explain this

memory usage.

15



Continue your solution here, if necessary:

16



You may use this page as scratch paper, or as an extra page for a previous solution. If

so, indicate on that page that your work continues here.

17



