
3/1/2016

1

CSE373: Data Structures and Algorithms
Bucket Sort and Radix Sort

Steve Tanimoto
Winter 2016

This lecture material represents the work of multiple instructors at the University of Washington.
Thank you to all who have contributed!

Sorting: The Big Picture
Surprising amount of neat stuff to say about sorting:

Winter 2016 2CSE 373: Data Structures & Algorithms

Simple
algorithms:

O(n2)
Fancier

algorithms:
O(n log n)

Comparison
lower bound:(n log n)

Specialized
algorithms:

O(n)
Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

Radix sort
• Origins go back to the 1890 U.S. census
• Radix = “the base of a number system”

– Examples will use 10 because we are used to that
– In implementations use larger numbers

• For example, for ASCII strings, might use 128
• Idea:

– Bucket sort on one digit at a time
• Number of buckets = radix
• Starting with least significant digit
• Keeping sort stable

– Do one pass per digit
– Invariant: After k passes (digits), the last k digits are sorted

Winter 2016 3CSE 373: Data Structures & Algorithms

Example
Radix = 10

Input: 478
537

9
721

3
38

143
67

Winter 2016 4CSE 373: Data Structures & Algorithms

First pass:
bucket sort by ones digit

1
721

2 3
3

143

4 5 6 7
537
67

8
478
38

9
9

0

Order now: 721
3

143
537
67

478
38
9

Example

Winter 2016 5CSE 373: Data Structures & Algorithms

Second pass:
stable bucket sort by tens digit

1
721

2 3
3

143

4 5 6 7
537
67

8
478
38

9
9

0

Order now: 3
9

721
537
38

143
67

478

Radix = 10

Order was: 721
3

143
537
67

478
38
9

1 2
721

3
537
38

4
143

5 6
67

7
478

8 90
3
9

Example

Winter 2016 6CSE 373: Data Structures & Algorithms

Third pass:
stable bucket sort by 100s digit

Order now: 3
9

38
67

143
478
537
721

Radix = 10
1

143
2 3 4

478
5

537
6 7

721
8 90

3
9

38
67Order was: 3

9
721
537
38

143
67

478

1 2
721

3
537
38

4
143

5 6
67

7
478

8 90
3
9

3/1/2016

2

Analysis
Input size: n
Number of buckets = Radix: B
Number of passes = “Digits”: P
Work per pass is 1 bucket sort: O(B+n)
Total work is O(P(B+n))
Compared to comparison sorts, sometimes a win, but often not

– Example: Strings of English letters up to length 15
• Run-time proportional to: 15*(52 + n)
• This is less than n log n only if n > 33,000
• Of course, cross-over point depends on constant factors of

the implementations
– And radix sort can have poor locality properties

Winter 2016 7CSE 373: Data Structures & Algorithms

Sorting: The Big Picture
Surprising amount of neat stuff to say about sorting:

Winter 2016 8CSE 373: Data Structures & Algorithms

Simple
algorithms:

O(n2)
Fancier

algorithms:
O(n log n)

Comparison
lower bound:(n log n)

Specialized
algorithms:

O(n)
Handling
huge data

sets

Insertion sort
Selection sort
Shell sort
…

Heap sort
Merge sort
Quick sort
…

Bucket sort
Radix sort

External
sorting

Last Slide on Sorting
• Simple O(n2) sorts can be fastest for small n

– Selection sort, Insertion sort (latter linear for mostly-sorted)
– Good for “below a cut-off” to help divide-and-conquer sorts

• O(n log n) sorts
– Heap sort, in-place but not stable nor parallelizable
– Merge sort, not in place but stable and works as external sort
– Quick sort, in place but not stable and O(n2) in worst-case

• Often fastest, but depends on costs of comparisons/copies
•  (n log n) is worst-case and average lower-bound for sorting by

comparisons
• Non-comparison sorts

– Bucket sort good for small number of possible key values
– Radix sort uses fewer buckets and more phases

• Best way to sort? It depends!
Winter 2016 9CSE 373: Data Structures & Algorithms

Done with sorting! (phew..)
• Moving on….

• There are many many algorithm techniques in the world
– We’ve learned a few

• What are a few other “classic” algorithm techniques you should
at least have heard of?
– And what are the main ideas behind how they work?

Winter 2016 10CSE 373: Data Structures & Algorithms

